Intermittency and regularized Fredholm determinants
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0...
Ausführliche Beschreibung
Autor*in: |
Rugh, Hans Henrik [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 135(1999), 1 vom: Jan., Seite 1-24 |
---|---|
Übergeordnetes Werk: |
volume:135 ; year:1999 ; number:1 ; month:01 ; pages:1-24 |
Links: |
---|
DOI / URN: |
10.1007/s002220050277 |
---|
Katalog-ID: |
OLC2050915179 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050915179 | ||
003 | DE-627 | ||
005 | 20230323220920.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s002220050277 |2 doi | |
035 | |a (DE-627)OLC2050915179 | ||
035 | |a (DE-He213)s002220050277-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Rugh, Hans Henrik |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intermittency and regularized Fredholm determinants |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1999 | ||
520 | |a Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. | ||
650 | 4 | |a Function Space | |
650 | 4 | |a Holomorphic Function | |
650 | 4 | |a Unit Disc | |
650 | 4 | |a Open Neighborhood | |
650 | 4 | |a Conformal Transformation | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 135(1999), 1 vom: Jan., Seite 1-24 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:135 |g year:1999 |g number:1 |g month:01 |g pages:1-24 |
856 | 4 | 1 | |u https://doi.org/10.1007/s002220050277 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 135 |j 1999 |e 1 |c 01 |h 1-24 |
author_variant |
h h r hh hhr |
---|---|
matchkey_str |
article:00209910:1999----::nemtecadeuaiefeh |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/s002220050277 doi (DE-627)OLC2050915179 (DE-He213)s002220050277-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Rugh, Hans Henrik verfasserin aut Intermittency and regularized Fredholm determinants 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation Enthalten in Inventiones mathematicae Springer-Verlag, 1966 135(1999), 1 vom: Jan., Seite 1-24 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:135 year:1999 number:1 month:01 pages:1-24 https://doi.org/10.1007/s002220050277 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 135 1999 1 01 1-24 |
spelling |
10.1007/s002220050277 doi (DE-627)OLC2050915179 (DE-He213)s002220050277-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Rugh, Hans Henrik verfasserin aut Intermittency and regularized Fredholm determinants 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation Enthalten in Inventiones mathematicae Springer-Verlag, 1966 135(1999), 1 vom: Jan., Seite 1-24 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:135 year:1999 number:1 month:01 pages:1-24 https://doi.org/10.1007/s002220050277 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 135 1999 1 01 1-24 |
allfields_unstemmed |
10.1007/s002220050277 doi (DE-627)OLC2050915179 (DE-He213)s002220050277-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Rugh, Hans Henrik verfasserin aut Intermittency and regularized Fredholm determinants 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation Enthalten in Inventiones mathematicae Springer-Verlag, 1966 135(1999), 1 vom: Jan., Seite 1-24 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:135 year:1999 number:1 month:01 pages:1-24 https://doi.org/10.1007/s002220050277 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 135 1999 1 01 1-24 |
allfieldsGer |
10.1007/s002220050277 doi (DE-627)OLC2050915179 (DE-He213)s002220050277-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Rugh, Hans Henrik verfasserin aut Intermittency and regularized Fredholm determinants 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation Enthalten in Inventiones mathematicae Springer-Verlag, 1966 135(1999), 1 vom: Jan., Seite 1-24 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:135 year:1999 number:1 month:01 pages:1-24 https://doi.org/10.1007/s002220050277 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 135 1999 1 01 1-24 |
allfieldsSound |
10.1007/s002220050277 doi (DE-627)OLC2050915179 (DE-He213)s002220050277-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Rugh, Hans Henrik verfasserin aut Intermittency and regularized Fredholm determinants 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation Enthalten in Inventiones mathematicae Springer-Verlag, 1966 135(1999), 1 vom: Jan., Seite 1-24 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:135 year:1999 number:1 month:01 pages:1-24 https://doi.org/10.1007/s002220050277 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 135 1999 1 01 1-24 |
language |
English |
source |
Enthalten in Inventiones mathematicae 135(1999), 1 vom: Jan., Seite 1-24 volume:135 year:1999 number:1 month:01 pages:1-24 |
sourceStr |
Enthalten in Inventiones mathematicae 135(1999), 1 vom: Jan., Seite 1-24 volume:135 year:1999 number:1 month:01 pages:1-24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Rugh, Hans Henrik @@aut@@ |
publishDateDaySort_date |
1999-01-01T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050915179 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050915179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220920.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002220050277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050915179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002220050277-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intermittency and regularized Fredholm determinants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unit Disc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open Neighborhood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">135(1999), 1 vom: Jan., Seite 1-24</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-24</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002220050277</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">1-24</subfield></datafield></record></collection>
|
author |
Rugh, Hans Henrik |
spellingShingle |
Rugh, Hans Henrik ddc 510 ssgn 17,1 rvk SA 5940 misc Function Space misc Holomorphic Function misc Unit Disc misc Open Neighborhood misc Conformal Transformation Intermittency and regularized Fredholm determinants |
authorStr |
Rugh, Hans Henrik |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk Intermittency and regularized Fredholm determinants Function Space Holomorphic Function Unit Disc Open Neighborhood Conformal Transformation |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Function Space misc Holomorphic Function misc Unit Disc misc Open Neighborhood misc Conformal Transformation |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Function Space misc Holomorphic Function misc Unit Disc misc Open Neighborhood misc Conformal Transformation |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Function Space misc Holomorphic Function misc Unit Disc misc Open Neighborhood misc Conformal Transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
Intermittency and regularized Fredholm determinants |
ctrlnum |
(DE-627)OLC2050915179 (DE-He213)s002220050277-p |
title_full |
Intermittency and regularized Fredholm determinants |
author_sort |
Rugh, Hans Henrik |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Rugh, Hans Henrik |
container_volume |
135 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Rugh, Hans Henrik |
doi_str_mv |
10.1007/s002220050277 |
dewey-full |
510 |
title_sort |
intermittency and regularized fredholm determinants |
title_auth |
Intermittency and regularized Fredholm determinants |
abstract |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. © Springer-Verlag Berlin Heidelberg 1999 |
abstractGer |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. © Springer-Verlag Berlin Heidelberg 1999 |
abstract_unstemmed |
Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc. © Springer-Verlag Berlin Heidelberg 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Intermittency and regularized Fredholm determinants |
url |
https://doi.org/10.1007/s002220050277 |
remote_bool |
false |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s002220050277 |
up_date |
2024-07-04T03:09:32.409Z |
_version_ |
1803616331939971072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050915179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220920.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002220050277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050915179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002220050277-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intermittency and regularized Fredholm determinants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. We consider real-analytic maps of the interval I=[0,1] which are expanding everywhere except for a neutral fixed point at 0. We show that on a certain function space the associated Perron-Frobenius operator ℳ has a continuous and residual spectrum contained in the line-segment $ σ_{c} $=[0,1] and a point spectrum $ σ_{p} $ which has no points of accumulation outside 0 and 1. Furthermore, points in $ σ_{p} $−{0,1} are eigenvalues of finite multiplicity. We construct a regularized Fredholm determinant d(λ) which has a holomorphic extension to λ∈ℂ−$ σ_{c} $ and can be analytically continued from each side of $ σ_{c} $ to an open neighborhood of $ σ_{c} $−{0,1} (on different Riemann sheets). In ℂ−$ σ_{c} $ the zero-set of d(λ) is in one-to-one correspondence with the point spectrum of ℳ. Through the conformal transformation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the function d∘λ(z) extends to a holomorphic function in a domain which contains the unit disc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unit Disc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open Neighborhood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">135(1999), 1 vom: Jan., Seite 1-24</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-24</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002220050277</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">1-24</subfield></datafield></record></collection>
|
score |
7.400791 |