Geometric characterizations of Gromov hyperbolicity
Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and...
Ausführliche Beschreibung
Autor*in: |
Balogh, Zoltán M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 153(2003), 2 vom: 10. Apr., Seite 261-301 |
---|---|
Übergeordnetes Werk: |
volume:153 ; year:2003 ; number:2 ; day:10 ; month:04 ; pages:261-301 |
Links: |
---|
DOI / URN: |
10.1007/s00222-003-0287-6 |
---|
Katalog-ID: |
OLC2050918593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050918593 | ||
003 | DE-627 | ||
005 | 20230323220941.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00222-003-0287-6 |2 doi | |
035 | |a (DE-627)OLC2050918593 | ||
035 | |a (DE-He213)s00222-003-0287-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Balogh, Zoltán M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geometric characterizations of Gromov hyperbolicity |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2003 | ||
520 | |a Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. | ||
650 | 4 | |a Geometric Property | |
650 | 4 | |a Separation Condition | |
650 | 4 | |a Geometric Characterization | |
650 | 4 | |a Control Geometry | |
650 | 4 | |a Gromov Hyperbolicity | |
700 | 1 | |a Buckley, Stephen M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 153(2003), 2 vom: 10. Apr., Seite 261-301 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:153 |g year:2003 |g number:2 |g day:10 |g month:04 |g pages:261-301 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00222-003-0287-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 153 |j 2003 |e 2 |b 10 |c 04 |h 261-301 |
author_variant |
z m b zm zmb s m b sm smb |
---|---|
matchkey_str |
article:00209910:2003----::emticaatrztosfrm |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00222-003-0287-6 doi (DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Balogh, Zoltán M. verfasserin aut Geometric characterizations of Gromov hyperbolicity 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2003 Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity Buckley, Stephen M. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 153(2003), 2 vom: 10. Apr., Seite 261-301 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:153 year:2003 number:2 day:10 month:04 pages:261-301 https://doi.org/10.1007/s00222-003-0287-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 153 2003 2 10 04 261-301 |
spelling |
10.1007/s00222-003-0287-6 doi (DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Balogh, Zoltán M. verfasserin aut Geometric characterizations of Gromov hyperbolicity 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2003 Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity Buckley, Stephen M. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 153(2003), 2 vom: 10. Apr., Seite 261-301 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:153 year:2003 number:2 day:10 month:04 pages:261-301 https://doi.org/10.1007/s00222-003-0287-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 153 2003 2 10 04 261-301 |
allfields_unstemmed |
10.1007/s00222-003-0287-6 doi (DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Balogh, Zoltán M. verfasserin aut Geometric characterizations of Gromov hyperbolicity 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2003 Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity Buckley, Stephen M. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 153(2003), 2 vom: 10. Apr., Seite 261-301 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:153 year:2003 number:2 day:10 month:04 pages:261-301 https://doi.org/10.1007/s00222-003-0287-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 153 2003 2 10 04 261-301 |
allfieldsGer |
10.1007/s00222-003-0287-6 doi (DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Balogh, Zoltán M. verfasserin aut Geometric characterizations of Gromov hyperbolicity 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2003 Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity Buckley, Stephen M. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 153(2003), 2 vom: 10. Apr., Seite 261-301 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:153 year:2003 number:2 day:10 month:04 pages:261-301 https://doi.org/10.1007/s00222-003-0287-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 153 2003 2 10 04 261-301 |
allfieldsSound |
10.1007/s00222-003-0287-6 doi (DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Balogh, Zoltán M. verfasserin aut Geometric characterizations of Gromov hyperbolicity 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2003 Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity Buckley, Stephen M. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 153(2003), 2 vom: 10. Apr., Seite 261-301 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:153 year:2003 number:2 day:10 month:04 pages:261-301 https://doi.org/10.1007/s00222-003-0287-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 153 2003 2 10 04 261-301 |
language |
English |
source |
Enthalten in Inventiones mathematicae 153(2003), 2 vom: 10. Apr., Seite 261-301 volume:153 year:2003 number:2 day:10 month:04 pages:261-301 |
sourceStr |
Enthalten in Inventiones mathematicae 153(2003), 2 vom: 10. Apr., Seite 261-301 volume:153 year:2003 number:2 day:10 month:04 pages:261-301 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Balogh, Zoltán M. @@aut@@ Buckley, Stephen M. @@aut@@ |
publishDateDaySort_date |
2003-04-10T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050918593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050918593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-003-0287-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050918593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-003-0287-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balogh, Zoltán M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric characterizations of Gromov hyperbolicity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gromov Hyperbolicity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buckley, Stephen M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">153(2003), 2 vom: 10. Apr., Seite 261-301</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">day:10</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:261-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-003-0287-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="b">10</subfield><subfield code="c">04</subfield><subfield code="h">261-301</subfield></datafield></record></collection>
|
author |
Balogh, Zoltán M. |
spellingShingle |
Balogh, Zoltán M. ddc 510 ssgn 17,1 rvk SA 5940 misc Geometric Property misc Separation Condition misc Geometric Characterization misc Control Geometry misc Gromov Hyperbolicity Geometric characterizations of Gromov hyperbolicity |
authorStr |
Balogh, Zoltán M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk Geometric characterizations of Gromov hyperbolicity Geometric Property Separation Condition Geometric Characterization Control Geometry Gromov Hyperbolicity |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Geometric Property misc Separation Condition misc Geometric Characterization misc Control Geometry misc Gromov Hyperbolicity |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Geometric Property misc Separation Condition misc Geometric Characterization misc Control Geometry misc Gromov Hyperbolicity |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Geometric Property misc Separation Condition misc Geometric Characterization misc Control Geometry misc Gromov Hyperbolicity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
Geometric characterizations of Gromov hyperbolicity |
ctrlnum |
(DE-627)OLC2050918593 (DE-He213)s00222-003-0287-6-p |
title_full |
Geometric characterizations of Gromov hyperbolicity |
author_sort |
Balogh, Zoltán M. |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
261 |
author_browse |
Balogh, Zoltán M. Buckley, Stephen M. |
container_volume |
153 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Balogh, Zoltán M. |
doi_str_mv |
10.1007/s00222-003-0287-6 |
dewey-full |
510 |
title_sort |
geometric characterizations of gromov hyperbolicity |
title_auth |
Geometric characterizations of Gromov hyperbolicity |
abstract |
Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. © Springer-Verlag 2003 |
abstractGer |
Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. © Springer-Verlag 2003 |
abstract_unstemmed |
Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition. © Springer-Verlag 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Geometric characterizations of Gromov hyperbolicity |
url |
https://doi.org/10.1007/s00222-003-0287-6 |
remote_bool |
false |
author2 |
Buckley, Stephen M. |
author2Str |
Buckley, Stephen M. |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00222-003-0287-6 |
up_date |
2024-07-04T03:09:54.609Z |
_version_ |
1803616355219406848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050918593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-003-0287-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050918593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-003-0287-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balogh, Zoltán M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric characterizations of Gromov hyperbolicity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring–Hayman property and a separation condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric Characterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gromov Hyperbolicity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buckley, Stephen M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">153(2003), 2 vom: 10. Apr., Seite 261-301</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">day:10</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:261-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-003-0287-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="b">10</subfield><subfield code="c">04</subfield><subfield code="h">261-301</subfield></datafield></record></collection>
|
score |
7.4007845 |