Continuum limits of random matrices and the Brownian carousel
Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic functio...
Ausführliche Beschreibung
Autor*in: |
Valkó, Benedek [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 177(2009), 3 vom: 27. Feb., Seite 463-508 |
---|---|
Übergeordnetes Werk: |
volume:177 ; year:2009 ; number:3 ; day:27 ; month:02 ; pages:463-508 |
Links: |
---|
DOI / URN: |
10.1007/s00222-009-0180-z |
---|
Katalog-ID: |
OLC2050922477 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050922477 | ||
003 | DE-627 | ||
005 | 20230323221008.0 | ||
007 | tu | ||
008 | 200819s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00222-009-0180-z |2 doi | |
035 | |a (DE-627)OLC2050922477 | ||
035 | |a (DE-He213)s00222-009-0180-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Valkó, Benedek |e verfasserin |4 aut | |
245 | 1 | 0 | |a Continuum limits of random matrices and the Brownian carousel |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2009 | ||
520 | |a Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. | ||
650 | 4 | |a Point Process | |
650 | 4 | |a Phase Function | |
650 | 4 | |a Random Matrice | |
650 | 4 | |a Continuum Limit | |
650 | 4 | |a Hyperbolic Plane | |
700 | 1 | |a Virág, Bálint |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 177(2009), 3 vom: 27. Feb., Seite 463-508 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:177 |g year:2009 |g number:3 |g day:27 |g month:02 |g pages:463-508 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00222-009-0180-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 177 |j 2009 |e 3 |b 27 |c 02 |h 463-508 |
author_variant |
b v bv b v bv |
---|---|
matchkey_str |
article:00209910:2009----::otnulmtornomtieadhb |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s00222-009-0180-z doi (DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Valkó, Benedek verfasserin aut Continuum limits of random matrices and the Brownian carousel 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane Virág, Bálint aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 177(2009), 3 vom: 27. Feb., Seite 463-508 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:177 year:2009 number:3 day:27 month:02 pages:463-508 https://doi.org/10.1007/s00222-009-0180-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 177 2009 3 27 02 463-508 |
spelling |
10.1007/s00222-009-0180-z doi (DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Valkó, Benedek verfasserin aut Continuum limits of random matrices and the Brownian carousel 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane Virág, Bálint aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 177(2009), 3 vom: 27. Feb., Seite 463-508 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:177 year:2009 number:3 day:27 month:02 pages:463-508 https://doi.org/10.1007/s00222-009-0180-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 177 2009 3 27 02 463-508 |
allfields_unstemmed |
10.1007/s00222-009-0180-z doi (DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Valkó, Benedek verfasserin aut Continuum limits of random matrices and the Brownian carousel 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane Virág, Bálint aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 177(2009), 3 vom: 27. Feb., Seite 463-508 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:177 year:2009 number:3 day:27 month:02 pages:463-508 https://doi.org/10.1007/s00222-009-0180-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 177 2009 3 27 02 463-508 |
allfieldsGer |
10.1007/s00222-009-0180-z doi (DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Valkó, Benedek verfasserin aut Continuum limits of random matrices and the Brownian carousel 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane Virág, Bálint aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 177(2009), 3 vom: 27. Feb., Seite 463-508 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:177 year:2009 number:3 day:27 month:02 pages:463-508 https://doi.org/10.1007/s00222-009-0180-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 177 2009 3 27 02 463-508 |
allfieldsSound |
10.1007/s00222-009-0180-z doi (DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Valkó, Benedek verfasserin aut Continuum limits of random matrices and the Brownian carousel 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane Virág, Bálint aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 177(2009), 3 vom: 27. Feb., Seite 463-508 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:177 year:2009 number:3 day:27 month:02 pages:463-508 https://doi.org/10.1007/s00222-009-0180-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 177 2009 3 27 02 463-508 |
language |
English |
source |
Enthalten in Inventiones mathematicae 177(2009), 3 vom: 27. Feb., Seite 463-508 volume:177 year:2009 number:3 day:27 month:02 pages:463-508 |
sourceStr |
Enthalten in Inventiones mathematicae 177(2009), 3 vom: 27. Feb., Seite 463-508 volume:177 year:2009 number:3 day:27 month:02 pages:463-508 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Valkó, Benedek @@aut@@ Virág, Bálint @@aut@@ |
publishDateDaySort_date |
2009-02-27T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050922477 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050922477</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221008.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-009-0180-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050922477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-009-0180-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Valkó, Benedek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuum limits of random matrices and the Brownian carousel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Matrice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Limit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Plane</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Virág, Bálint</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">177(2009), 3 vom: 27. Feb., Seite 463-508</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:463-508</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-009-0180-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="j">2009</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">463-508</subfield></datafield></record></collection>
|
author |
Valkó, Benedek |
spellingShingle |
Valkó, Benedek ddc 510 ssgn 17,1 rvk SA 5940 misc Point Process misc Phase Function misc Random Matrice misc Continuum Limit misc Hyperbolic Plane Continuum limits of random matrices and the Brownian carousel |
authorStr |
Valkó, Benedek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk Continuum limits of random matrices and the Brownian carousel Point Process Phase Function Random Matrice Continuum Limit Hyperbolic Plane |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Point Process misc Phase Function misc Random Matrice misc Continuum Limit misc Hyperbolic Plane |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Point Process misc Phase Function misc Random Matrice misc Continuum Limit misc Hyperbolic Plane |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Point Process misc Phase Function misc Random Matrice misc Continuum Limit misc Hyperbolic Plane |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
Continuum limits of random matrices and the Brownian carousel |
ctrlnum |
(DE-627)OLC2050922477 (DE-He213)s00222-009-0180-z-p |
title_full |
Continuum limits of random matrices and the Brownian carousel |
author_sort |
Valkó, Benedek |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
463 |
author_browse |
Valkó, Benedek Virág, Bálint |
container_volume |
177 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Valkó, Benedek |
doi_str_mv |
10.1007/s00222-009-0180-z |
dewey-full |
510 |
title_sort |
continuum limits of random matrices and the brownian carousel |
title_auth |
Continuum limits of random matrices and the Brownian carousel |
abstract |
Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. © Springer-Verlag 2009 |
abstractGer |
Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. © Springer-Verlag 2009 |
abstract_unstemmed |
Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2. © Springer-Verlag 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Continuum limits of random matrices and the Brownian carousel |
url |
https://doi.org/10.1007/s00222-009-0180-z |
remote_bool |
false |
author2 |
Virág, Bálint |
author2Str |
Virág, Bálint |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00222-009-0180-z |
up_date |
2024-07-04T03:10:22.438Z |
_version_ |
1803616384386596864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050922477</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221008.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-009-0180-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050922477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-009-0180-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Valkó, Benedek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuum limits of random matrices and the Brownian carousel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Matrice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Limit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Plane</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Virág, Bálint</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">177(2009), 3 vom: 27. Feb., Seite 463-508</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:463-508</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-009-0180-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="j">2009</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">463-508</subfield></datafield></record></collection>
|
score |
7.402669 |