On the number of zeros of Abelian integrals
Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long...
Ausführliche Beschreibung
Autor*in: |
Binyamini, Gal [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 181(2010), 2 vom: 15. Apr., Seite 227-289 |
---|---|
Übergeordnetes Werk: |
volume:181 ; year:2010 ; number:2 ; day:15 ; month:04 ; pages:227-289 |
Links: |
---|
DOI / URN: |
10.1007/s00222-010-0244-0 |
---|
Katalog-ID: |
OLC2050922906 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050922906 | ||
003 | DE-627 | ||
005 | 20230323221011.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00222-010-0244-0 |2 doi | |
035 | |a (DE-627)OLC2050922906 | ||
035 | |a (DE-He213)s00222-010-0244-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Binyamini, Gal |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the number of zeros of Abelian integrals |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. | ||
700 | 1 | |a Novikov, Dmitry |4 aut | |
700 | 1 | |a Yakovenko, Sergei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 181(2010), 2 vom: 15. Apr., Seite 227-289 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:181 |g year:2010 |g number:2 |g day:15 |g month:04 |g pages:227-289 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00222-010-0244-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 181 |j 2010 |e 2 |b 15 |c 04 |h 227-289 |
author_variant |
g b gb d n dn s y sy |
---|---|
matchkey_str |
article:00209910:2010----::nhnmeozrsfbla |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00222-010-0244-0 doi (DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Binyamini, Gal verfasserin aut On the number of zeros of Abelian integrals 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. Novikov, Dmitry aut Yakovenko, Sergei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 181(2010), 2 vom: 15. Apr., Seite 227-289 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:181 year:2010 number:2 day:15 month:04 pages:227-289 https://doi.org/10.1007/s00222-010-0244-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 181 2010 2 15 04 227-289 |
spelling |
10.1007/s00222-010-0244-0 doi (DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Binyamini, Gal verfasserin aut On the number of zeros of Abelian integrals 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. Novikov, Dmitry aut Yakovenko, Sergei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 181(2010), 2 vom: 15. Apr., Seite 227-289 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:181 year:2010 number:2 day:15 month:04 pages:227-289 https://doi.org/10.1007/s00222-010-0244-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 181 2010 2 15 04 227-289 |
allfields_unstemmed |
10.1007/s00222-010-0244-0 doi (DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Binyamini, Gal verfasserin aut On the number of zeros of Abelian integrals 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. Novikov, Dmitry aut Yakovenko, Sergei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 181(2010), 2 vom: 15. Apr., Seite 227-289 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:181 year:2010 number:2 day:15 month:04 pages:227-289 https://doi.org/10.1007/s00222-010-0244-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 181 2010 2 15 04 227-289 |
allfieldsGer |
10.1007/s00222-010-0244-0 doi (DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Binyamini, Gal verfasserin aut On the number of zeros of Abelian integrals 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. Novikov, Dmitry aut Yakovenko, Sergei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 181(2010), 2 vom: 15. Apr., Seite 227-289 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:181 year:2010 number:2 day:15 month:04 pages:227-289 https://doi.org/10.1007/s00222-010-0244-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 181 2010 2 15 04 227-289 |
allfieldsSound |
10.1007/s00222-010-0244-0 doi (DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Binyamini, Gal verfasserin aut On the number of zeros of Abelian integrals 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. Novikov, Dmitry aut Yakovenko, Sergei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 181(2010), 2 vom: 15. Apr., Seite 227-289 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:181 year:2010 number:2 day:15 month:04 pages:227-289 https://doi.org/10.1007/s00222-010-0244-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 181 2010 2 15 04 227-289 |
language |
English |
source |
Enthalten in Inventiones mathematicae 181(2010), 2 vom: 15. Apr., Seite 227-289 volume:181 year:2010 number:2 day:15 month:04 pages:227-289 |
sourceStr |
Enthalten in Inventiones mathematicae 181(2010), 2 vom: 15. Apr., Seite 227-289 volume:181 year:2010 number:2 day:15 month:04 pages:227-289 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Binyamini, Gal @@aut@@ Novikov, Dmitry @@aut@@ Yakovenko, Sergei @@aut@@ |
publishDateDaySort_date |
2010-04-15T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050922906 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050922906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221011.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0244-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050922906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0244-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binyamini, Gal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the number of zeros of Abelian integrals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, Dmitry</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yakovenko, Sergei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">181(2010), 2 vom: 15. Apr., Seite 227-289</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:227-289</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0244-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">227-289</subfield></datafield></record></collection>
|
author |
Binyamini, Gal |
spellingShingle |
Binyamini, Gal ddc 510 ssgn 17,1 rvk SA 5940 On the number of zeros of Abelian integrals |
authorStr |
Binyamini, Gal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk On the number of zeros of Abelian integrals |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
On the number of zeros of Abelian integrals |
ctrlnum |
(DE-627)OLC2050922906 (DE-He213)s00222-010-0244-0-p |
title_full |
On the number of zeros of Abelian integrals |
author_sort |
Binyamini, Gal |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
227 |
author_browse |
Binyamini, Gal Novikov, Dmitry Yakovenko, Sergei |
container_volume |
181 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Binyamini, Gal |
doi_str_mv |
10.1007/s00222-010-0244-0 |
dewey-full |
510 |
title_sort |
on the number of zeros of abelian integrals |
title_auth |
On the number of zeros of Abelian integrals |
abstract |
Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. © Springer-Verlag 2010 |
abstractGer |
Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On the number of zeros of Abelian integrals |
url |
https://doi.org/10.1007/s00222-010-0244-0 |
remote_bool |
false |
author2 |
Novikov, Dmitry Yakovenko, Sergei |
author2Str |
Novikov, Dmitry Yakovenko, Sergei |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00222-010-0244-0 |
up_date |
2024-07-04T03:10:25.443Z |
_version_ |
1803616387537567744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050922906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221011.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0244-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050922906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0244-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Binyamini, Gal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the number of zeros of Abelian integrals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the number of limit cycles generated from nonsingular energy level ovals (periodic trajectories) in a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing infinitesimal Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection defined over ℚ (the Gauss-Manin connection) with a quasiunipotent monodromy group.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, Dmitry</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yakovenko, Sergei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">181(2010), 2 vom: 15. Apr., Seite 227-289</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:227-289</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0244-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">227-289</subfield></datafield></record></collection>
|
score |
7.400509 |