A characterization of hyperbolic rational maps
Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result.
Autor*in: |
Cui, Guizhen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 183(2010), 3 vom: 18. Sept., Seite 451-516 |
---|---|
Übergeordnetes Werk: |
volume:183 ; year:2010 ; number:3 ; day:18 ; month:09 ; pages:451-516 |
Links: |
---|
DOI / URN: |
10.1007/s00222-010-0281-8 |
---|
Katalog-ID: |
OLC2050923244 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050923244 | ||
003 | DE-627 | ||
005 | 20230323221013.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00222-010-0281-8 |2 doi | |
035 | |a (DE-627)OLC2050923244 | ||
035 | |a (DE-He213)s00222-010-0281-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Cui, Guizhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a A characterization of hyperbolic rational maps |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. | ||
650 | 4 | |a Boundary Curve | |
650 | 4 | |a Homotopy Class | |
650 | 4 | |a Jordan Curve | |
650 | 4 | |a Constant Complexity | |
650 | 4 | |a Quasiconformal Homeomorphism | |
700 | 1 | |a Tan, Lei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 183(2010), 3 vom: 18. Sept., Seite 451-516 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:183 |g year:2010 |g number:3 |g day:18 |g month:09 |g pages:451-516 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00222-010-0281-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 183 |j 2010 |e 3 |b 18 |c 09 |h 451-516 |
author_variant |
g c gc l t lt |
---|---|
matchkey_str |
article:00209910:2010----::caatrztoohproir |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00222-010-0281-8 doi (DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Cui, Guizhen verfasserin aut A characterization of hyperbolic rational maps 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism Tan, Lei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 183(2010), 3 vom: 18. Sept., Seite 451-516 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:183 year:2010 number:3 day:18 month:09 pages:451-516 https://doi.org/10.1007/s00222-010-0281-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 183 2010 3 18 09 451-516 |
spelling |
10.1007/s00222-010-0281-8 doi (DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Cui, Guizhen verfasserin aut A characterization of hyperbolic rational maps 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism Tan, Lei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 183(2010), 3 vom: 18. Sept., Seite 451-516 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:183 year:2010 number:3 day:18 month:09 pages:451-516 https://doi.org/10.1007/s00222-010-0281-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 183 2010 3 18 09 451-516 |
allfields_unstemmed |
10.1007/s00222-010-0281-8 doi (DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Cui, Guizhen verfasserin aut A characterization of hyperbolic rational maps 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism Tan, Lei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 183(2010), 3 vom: 18. Sept., Seite 451-516 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:183 year:2010 number:3 day:18 month:09 pages:451-516 https://doi.org/10.1007/s00222-010-0281-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 183 2010 3 18 09 451-516 |
allfieldsGer |
10.1007/s00222-010-0281-8 doi (DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Cui, Guizhen verfasserin aut A characterization of hyperbolic rational maps 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism Tan, Lei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 183(2010), 3 vom: 18. Sept., Seite 451-516 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:183 year:2010 number:3 day:18 month:09 pages:451-516 https://doi.org/10.1007/s00222-010-0281-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 183 2010 3 18 09 451-516 |
allfieldsSound |
10.1007/s00222-010-0281-8 doi (DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Cui, Guizhen verfasserin aut A characterization of hyperbolic rational maps 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism Tan, Lei aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 183(2010), 3 vom: 18. Sept., Seite 451-516 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:183 year:2010 number:3 day:18 month:09 pages:451-516 https://doi.org/10.1007/s00222-010-0281-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 183 2010 3 18 09 451-516 |
language |
English |
source |
Enthalten in Inventiones mathematicae 183(2010), 3 vom: 18. Sept., Seite 451-516 volume:183 year:2010 number:3 day:18 month:09 pages:451-516 |
sourceStr |
Enthalten in Inventiones mathematicae 183(2010), 3 vom: 18. Sept., Seite 451-516 volume:183 year:2010 number:3 day:18 month:09 pages:451-516 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Cui, Guizhen @@aut@@ Tan, Lei @@aut@@ |
publishDateDaySort_date |
2010-09-18T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050923244 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050923244</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0281-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050923244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0281-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A characterization of hyperbolic rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy Class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasiconformal Homeomorphism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">183(2010), 3 vom: 18. Sept., Seite 451-516</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:451-516</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0281-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">451-516</subfield></datafield></record></collection>
|
author |
Cui, Guizhen |
spellingShingle |
Cui, Guizhen ddc 510 ssgn 17,1 rvk SA 5940 misc Boundary Curve misc Homotopy Class misc Jordan Curve misc Constant Complexity misc Quasiconformal Homeomorphism A characterization of hyperbolic rational maps |
authorStr |
Cui, Guizhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk A characterization of hyperbolic rational maps Boundary Curve Homotopy Class Jordan Curve Constant Complexity Quasiconformal Homeomorphism |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Boundary Curve misc Homotopy Class misc Jordan Curve misc Constant Complexity misc Quasiconformal Homeomorphism |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Boundary Curve misc Homotopy Class misc Jordan Curve misc Constant Complexity misc Quasiconformal Homeomorphism |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Boundary Curve misc Homotopy Class misc Jordan Curve misc Constant Complexity misc Quasiconformal Homeomorphism |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
A characterization of hyperbolic rational maps |
ctrlnum |
(DE-627)OLC2050923244 (DE-He213)s00222-010-0281-8-p |
title_full |
A characterization of hyperbolic rational maps |
author_sort |
Cui, Guizhen |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
451 |
author_browse |
Cui, Guizhen Tan, Lei |
container_volume |
183 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Cui, Guizhen |
doi_str_mv |
10.1007/s00222-010-0281-8 |
dewey-full |
510 |
title_sort |
a characterization of hyperbolic rational maps |
title_auth |
A characterization of hyperbolic rational maps |
abstract |
Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. © Springer-Verlag 2010 |
abstractGer |
Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A characterization of hyperbolic rational maps |
url |
https://doi.org/10.1007/s00222-010-0281-8 |
remote_bool |
false |
author2 |
Tan, Lei |
author2Str |
Tan, Lei |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00222-010-0281-8 |
up_date |
2024-07-04T03:10:27.868Z |
_version_ |
1803616390092947456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050923244</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221013.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0281-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050923244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0281-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A characterization of hyperbolic rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We give a topological characterization of rational maps with disconnected Julia sets. Our results extend Thurston’s characterization of postcritically finite rational maps. In place of iteration on Teichmüller space, we use quasiconformal surgery and Thurston’s original result.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy Class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasiconformal Homeomorphism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">183(2010), 3 vom: 18. Sept., Seite 451-516</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:451-516</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0281-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">451-516</subfield></datafield></record></collection>
|
score |
7.401124 |