Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem
Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathc...
Ausführliche Beschreibung
Autor*in: |
Fusco, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 185(2010), 2 vom: 16. Dez., Seite 283-332 |
---|---|
Übergeordnetes Werk: |
volume:185 ; year:2010 ; number:2 ; day:16 ; month:12 ; pages:283-332 |
Links: |
---|
DOI / URN: |
10.1007/s00222-010-0306-3 |
---|
Katalog-ID: |
OLC205092349X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205092349X | ||
003 | DE-627 | ||
005 | 20230323221015.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00222-010-0306-3 |2 doi | |
035 | |a (DE-627)OLC205092349X | ||
035 | |a (DE-He213)s00222-010-0306-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Fusco, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. | ||
650 | 4 | |a Periodic Solution | |
650 | 4 | |a Periodic Orbit | |
650 | 4 | |a Periodic Motion | |
650 | 4 | |a Rotation Group | |
650 | 4 | |a Periodic Sequence | |
700 | 1 | |a Gronchi, G. F. |4 aut | |
700 | 1 | |a Negrini, P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 185(2010), 2 vom: 16. Dez., Seite 283-332 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:185 |g year:2010 |g number:2 |g day:16 |g month:12 |g pages:283-332 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00222-010-0306-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 185 |j 2010 |e 2 |b 16 |c 12 |h 283-332 |
author_variant |
g f gf g f g gf gfg p n pn |
---|---|
matchkey_str |
article:00209910:2010----::ltncoyertplgclosritadeidcouinot |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00222-010-0306-3 doi (DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Fusco, G. verfasserin aut Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence Gronchi, G. F. aut Negrini, P. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 185(2010), 2 vom: 16. Dez., Seite 283-332 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:185 year:2010 number:2 day:16 month:12 pages:283-332 https://doi.org/10.1007/s00222-010-0306-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 185 2010 2 16 12 283-332 |
spelling |
10.1007/s00222-010-0306-3 doi (DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Fusco, G. verfasserin aut Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence Gronchi, G. F. aut Negrini, P. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 185(2010), 2 vom: 16. Dez., Seite 283-332 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:185 year:2010 number:2 day:16 month:12 pages:283-332 https://doi.org/10.1007/s00222-010-0306-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 185 2010 2 16 12 283-332 |
allfields_unstemmed |
10.1007/s00222-010-0306-3 doi (DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Fusco, G. verfasserin aut Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence Gronchi, G. F. aut Negrini, P. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 185(2010), 2 vom: 16. Dez., Seite 283-332 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:185 year:2010 number:2 day:16 month:12 pages:283-332 https://doi.org/10.1007/s00222-010-0306-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 185 2010 2 16 12 283-332 |
allfieldsGer |
10.1007/s00222-010-0306-3 doi (DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Fusco, G. verfasserin aut Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence Gronchi, G. F. aut Negrini, P. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 185(2010), 2 vom: 16. Dez., Seite 283-332 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:185 year:2010 number:2 day:16 month:12 pages:283-332 https://doi.org/10.1007/s00222-010-0306-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 185 2010 2 16 12 283-332 |
allfieldsSound |
10.1007/s00222-010-0306-3 doi (DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Fusco, G. verfasserin aut Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence Gronchi, G. F. aut Negrini, P. aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 185(2010), 2 vom: 16. Dez., Seite 283-332 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:185 year:2010 number:2 day:16 month:12 pages:283-332 https://doi.org/10.1007/s00222-010-0306-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 185 2010 2 16 12 283-332 |
language |
English |
source |
Enthalten in Inventiones mathematicae 185(2010), 2 vom: 16. Dez., Seite 283-332 volume:185 year:2010 number:2 day:16 month:12 pages:283-332 |
sourceStr |
Enthalten in Inventiones mathematicae 185(2010), 2 vom: 16. Dez., Seite 283-332 volume:185 year:2010 number:2 day:16 month:12 pages:283-332 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Fusco, G. @@aut@@ Gronchi, G. F. @@aut@@ Negrini, P. @@aut@@ |
publishDateDaySort_date |
2010-12-16T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC205092349X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205092349X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0306-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205092349X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0306-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fusco, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Orbit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotation Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Sequence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gronchi, G. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negrini, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">185(2010), 2 vom: 16. Dez., Seite 283-332</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:283-332</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0306-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">12</subfield><subfield code="h">283-332</subfield></datafield></record></collection>
|
author |
Fusco, G. |
spellingShingle |
Fusco, G. ddc 510 ssgn 17,1 rvk SA 5940 misc Periodic Solution misc Periodic Orbit misc Periodic Motion misc Rotation Group misc Periodic Sequence Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
authorStr |
Fusco, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem Periodic Solution Periodic Orbit Periodic Motion Rotation Group Periodic Sequence |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Periodic Solution misc Periodic Orbit misc Periodic Motion misc Rotation Group misc Periodic Sequence |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Periodic Solution misc Periodic Orbit misc Periodic Motion misc Rotation Group misc Periodic Sequence |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Periodic Solution misc Periodic Orbit misc Periodic Motion misc Rotation Group misc Periodic Sequence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
ctrlnum |
(DE-627)OLC205092349X (DE-He213)s00222-010-0306-3-p |
title_full |
Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
author_sort |
Fusco, G. |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
283 |
author_browse |
Fusco, G. Gronchi, G. F. Negrini, P. |
container_volume |
185 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Fusco, G. |
doi_str_mv |
10.1007/s00222-010-0306-3 |
dewey-full |
510 |
title_sort |
platonic polyhedra, topological constraints and periodic solutions of the classical n-body problem |
title_auth |
Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
abstract |
Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. © Springer-Verlag 2010 |
abstractGer |
Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem |
url |
https://doi.org/10.1007/s00222-010-0306-3 |
remote_bool |
false |
author2 |
Gronchi, G. F. Negrini, P. |
author2Str |
Gronchi, G. F. Negrini, P. |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00222-010-0306-3 |
up_date |
2024-07-04T03:10:29.645Z |
_version_ |
1803616391956267008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205092349X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323221015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00222-010-0306-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205092349X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00222-010-0306-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fusco, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove the existence of a number of smooth periodic motions u∗ of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group $\mathcal{R}$ of one of the five Platonic polyhedra. The number N coincides with the order $|\mathcal{R}|$ of $\mathcal{R}$ and the particles have all the same mass. Our approach is variational and u∗ is a minimizer of the Lagrangian action $\mathcal{A}$ on a suitable subset $\mathcal{K}$ of the H1T-periodic maps u:ℝ→$ ℝ^{3N} $. The set ${\mathcal {K}}$ is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group $\mathcal{R}$. There exist infinitely many such cones ${\mathcal {K}}$, all with the property that ${\mathcal {A}}|_{{\mathcal {K}}}$ is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Orbit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotation Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Sequence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gronchi, G. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negrini, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">185(2010), 2 vom: 16. Dez., Seite 283-332</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:283-332</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00222-010-0306-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">12</subfield><subfield code="h">283-332</subfield></datafield></record></collection>
|
score |
7.4007626 |