Rigid body impact with moment of rolling friction
Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling fr...
Ausführliche Beschreibung
Autor*in: |
Marghitu, Dan B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 50(2007), 3 vom: 18. Jan., Seite 597-608 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2007 ; number:3 ; day:18 ; month:01 ; pages:597-608 |
Links: |
---|
DOI / URN: |
10.1007/s11071-006-9176-z |
---|
Katalog-ID: |
OLC2051082855 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051082855 | ||
003 | DE-627 | ||
005 | 20230503224557.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-006-9176-z |2 doi | |
035 | |a (DE-627)OLC2051082855 | ||
035 | |a (DE-He213)s11071-006-9176-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Marghitu, Dan B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rigid body impact with moment of rolling friction |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2007 | ||
520 | |a Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. | ||
650 | 4 | |a Impact with friction | |
650 | 4 | |a Coefficient of rolling friction | |
650 | 4 | |a Coefficient of restitution | |
700 | 1 | |a Stoenescu, Eleonor D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 50(2007), 3 vom: 18. Jan., Seite 597-608 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2007 |g number:3 |g day:18 |g month:01 |g pages:597-608 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-006-9176-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 50 |j 2007 |e 3 |b 18 |c 01 |h 597-608 |
author_variant |
d b m db dbm e d s ed eds |
---|---|
matchkey_str |
article:0924090X:2007----::iibdipcwtmmnorl |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11071-006-9176-z doi (DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Marghitu, Dan B. verfasserin aut Rigid body impact with moment of rolling friction 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. Impact with friction Coefficient of rolling friction Coefficient of restitution Stoenescu, Eleonor D. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 50(2007), 3 vom: 18. Jan., Seite 597-608 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:50 year:2007 number:3 day:18 month:01 pages:597-608 https://doi.org/10.1007/s11071-006-9176-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 AR 50 2007 3 18 01 597-608 |
spelling |
10.1007/s11071-006-9176-z doi (DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Marghitu, Dan B. verfasserin aut Rigid body impact with moment of rolling friction 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. Impact with friction Coefficient of rolling friction Coefficient of restitution Stoenescu, Eleonor D. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 50(2007), 3 vom: 18. Jan., Seite 597-608 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:50 year:2007 number:3 day:18 month:01 pages:597-608 https://doi.org/10.1007/s11071-006-9176-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 AR 50 2007 3 18 01 597-608 |
allfields_unstemmed |
10.1007/s11071-006-9176-z doi (DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Marghitu, Dan B. verfasserin aut Rigid body impact with moment of rolling friction 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. Impact with friction Coefficient of rolling friction Coefficient of restitution Stoenescu, Eleonor D. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 50(2007), 3 vom: 18. Jan., Seite 597-608 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:50 year:2007 number:3 day:18 month:01 pages:597-608 https://doi.org/10.1007/s11071-006-9176-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 AR 50 2007 3 18 01 597-608 |
allfieldsGer |
10.1007/s11071-006-9176-z doi (DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Marghitu, Dan B. verfasserin aut Rigid body impact with moment of rolling friction 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. Impact with friction Coefficient of rolling friction Coefficient of restitution Stoenescu, Eleonor D. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 50(2007), 3 vom: 18. Jan., Seite 597-608 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:50 year:2007 number:3 day:18 month:01 pages:597-608 https://doi.org/10.1007/s11071-006-9176-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 AR 50 2007 3 18 01 597-608 |
allfieldsSound |
10.1007/s11071-006-9176-z doi (DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Marghitu, Dan B. verfasserin aut Rigid body impact with moment of rolling friction 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. Impact with friction Coefficient of rolling friction Coefficient of restitution Stoenescu, Eleonor D. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 50(2007), 3 vom: 18. Jan., Seite 597-608 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:50 year:2007 number:3 day:18 month:01 pages:597-608 https://doi.org/10.1007/s11071-006-9176-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 AR 50 2007 3 18 01 597-608 |
language |
English |
source |
Enthalten in Nonlinear dynamics 50(2007), 3 vom: 18. Jan., Seite 597-608 volume:50 year:2007 number:3 day:18 month:01 pages:597-608 |
sourceStr |
Enthalten in Nonlinear dynamics 50(2007), 3 vom: 18. Jan., Seite 597-608 volume:50 year:2007 number:3 day:18 month:01 pages:597-608 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Impact with friction Coefficient of rolling friction Coefficient of restitution |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Marghitu, Dan B. @@aut@@ Stoenescu, Eleonor D. @@aut@@ |
publishDateDaySort_date |
2007-01-18T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051082855 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051082855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503224557.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-006-9176-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051082855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-006-9176-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marghitu, Dan B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rigid body impact with moment of rolling friction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact with friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of rolling friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of restitution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoenescu, Eleonor D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">50(2007), 3 vom: 18. Jan., Seite 597-608</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:597-608</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-006-9176-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">597-608</subfield></datafield></record></collection>
|
author |
Marghitu, Dan B. |
spellingShingle |
Marghitu, Dan B. ddc 510 ssgn 11 misc Impact with friction misc Coefficient of rolling friction misc Coefficient of restitution Rigid body impact with moment of rolling friction |
authorStr |
Marghitu, Dan B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Rigid body impact with moment of rolling friction Impact with friction Coefficient of rolling friction Coefficient of restitution |
topic |
ddc 510 ssgn 11 misc Impact with friction misc Coefficient of rolling friction misc Coefficient of restitution |
topic_unstemmed |
ddc 510 ssgn 11 misc Impact with friction misc Coefficient of rolling friction misc Coefficient of restitution |
topic_browse |
ddc 510 ssgn 11 misc Impact with friction misc Coefficient of rolling friction misc Coefficient of restitution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Rigid body impact with moment of rolling friction |
ctrlnum |
(DE-627)OLC2051082855 (DE-He213)s11071-006-9176-z-p |
title_full |
Rigid body impact with moment of rolling friction |
author_sort |
Marghitu, Dan B. |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
597 |
author_browse |
Marghitu, Dan B. Stoenescu, Eleonor D. |
container_volume |
50 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Marghitu, Dan B. |
doi_str_mv |
10.1007/s11071-006-9176-z |
dewey-full |
510 |
title_sort |
rigid body impact with moment of rolling friction |
title_auth |
Rigid body impact with moment of rolling friction |
abstract |
Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. © Springer Science+Business Media, Inc. 2007 |
abstractGer |
Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. © Springer Science+Business Media, Inc. 2007 |
abstract_unstemmed |
Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction. © Springer Science+Business Media, Inc. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4307 |
container_issue |
3 |
title_short |
Rigid body impact with moment of rolling friction |
url |
https://doi.org/10.1007/s11071-006-9176-z |
remote_bool |
false |
author2 |
Stoenescu, Eleonor D. |
author2Str |
Stoenescu, Eleonor D. |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-006-9176-z |
up_date |
2024-07-04T03:32:41.051Z |
_version_ |
1803617788023013376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051082855</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503224557.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-006-9176-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051082855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-006-9176-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marghitu, Dan B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rigid body impact with moment of rolling friction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact with friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of rolling friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of restitution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoenescu, Eleonor D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">50(2007), 3 vom: 18. Jan., Seite 597-608</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:597-608</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-006-9176-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">597-608</subfield></datafield></record></collection>
|
score |
7.402128 |