Linearizability criteria for systems of two second-order differential equations by complex methods
Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinea...
Ausführliche Beschreibung
Autor*in: |
Ali, S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 66(2011), 1-2 vom: 03. Feb., Seite 77-88 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2011 ; number:1-2 ; day:03 ; month:02 ; pages:77-88 |
Links: |
---|
DOI / URN: |
10.1007/s11071-010-9912-2 |
---|
Katalog-ID: |
OLC205108923X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205108923X | ||
003 | DE-627 | ||
005 | 20230503225121.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-010-9912-2 |2 doi | |
035 | |a (DE-627)OLC205108923X | ||
035 | |a (DE-He213)s11071-010-9912-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Ali, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Linearizability criteria for systems of two second-order differential equations by complex methods |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2011 | ||
520 | |a Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. | ||
650 | 4 | |a Complex linearization | |
650 | 4 | |a Complex Lie symmetries | |
650 | 4 | |a Lie linearizability | |
700 | 1 | |a Mahomed, F. M. |4 aut | |
700 | 1 | |a Qadir, Asghar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 66(2011), 1-2 vom: 03. Feb., Seite 77-88 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2011 |g number:1-2 |g day:03 |g month:02 |g pages:77-88 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-010-9912-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 66 |j 2011 |e 1-2 |b 03 |c 02 |h 77-88 |
author_variant |
s a sa f m m fm fmm a q aq |
---|---|
matchkey_str |
article:0924090X:2011----::ierzbltcieifrytmotoeodredfeetae |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11071-010-9912-2 doi (DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Ali, S. verfasserin aut Linearizability criteria for systems of two second-order differential equations by complex methods 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. Complex linearization Complex Lie symmetries Lie linearizability Mahomed, F. M. aut Qadir, Asghar aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 66(2011), 1-2 vom: 03. Feb., Seite 77-88 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 https://doi.org/10.1007/s11071-010-9912-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 AR 66 2011 1-2 03 02 77-88 |
spelling |
10.1007/s11071-010-9912-2 doi (DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Ali, S. verfasserin aut Linearizability criteria for systems of two second-order differential equations by complex methods 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. Complex linearization Complex Lie symmetries Lie linearizability Mahomed, F. M. aut Qadir, Asghar aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 66(2011), 1-2 vom: 03. Feb., Seite 77-88 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 https://doi.org/10.1007/s11071-010-9912-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 AR 66 2011 1-2 03 02 77-88 |
allfields_unstemmed |
10.1007/s11071-010-9912-2 doi (DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Ali, S. verfasserin aut Linearizability criteria for systems of two second-order differential equations by complex methods 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. Complex linearization Complex Lie symmetries Lie linearizability Mahomed, F. M. aut Qadir, Asghar aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 66(2011), 1-2 vom: 03. Feb., Seite 77-88 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 https://doi.org/10.1007/s11071-010-9912-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 AR 66 2011 1-2 03 02 77-88 |
allfieldsGer |
10.1007/s11071-010-9912-2 doi (DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Ali, S. verfasserin aut Linearizability criteria for systems of two second-order differential equations by complex methods 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. Complex linearization Complex Lie symmetries Lie linearizability Mahomed, F. M. aut Qadir, Asghar aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 66(2011), 1-2 vom: 03. Feb., Seite 77-88 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 https://doi.org/10.1007/s11071-010-9912-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 AR 66 2011 1-2 03 02 77-88 |
allfieldsSound |
10.1007/s11071-010-9912-2 doi (DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Ali, S. verfasserin aut Linearizability criteria for systems of two second-order differential equations by complex methods 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. Complex linearization Complex Lie symmetries Lie linearizability Mahomed, F. M. aut Qadir, Asghar aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 66(2011), 1-2 vom: 03. Feb., Seite 77-88 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 https://doi.org/10.1007/s11071-010-9912-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 AR 66 2011 1-2 03 02 77-88 |
language |
English |
source |
Enthalten in Nonlinear dynamics 66(2011), 1-2 vom: 03. Feb., Seite 77-88 volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 |
sourceStr |
Enthalten in Nonlinear dynamics 66(2011), 1-2 vom: 03. Feb., Seite 77-88 volume:66 year:2011 number:1-2 day:03 month:02 pages:77-88 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Complex linearization Complex Lie symmetries Lie linearizability |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Ali, S. @@aut@@ Mahomed, F. M. @@aut@@ Qadir, Asghar @@aut@@ |
publishDateDaySort_date |
2011-02-03T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC205108923X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205108923X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503225121.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-010-9912-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205108923X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-010-9912-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linearizability criteria for systems of two second-order differential equations by complex methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex linearization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Lie symmetries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie linearizability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahomed, F. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qadir, Asghar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">66(2011), 1-2 vom: 03. Feb., Seite 77-88</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:77-88</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-010-9912-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2011</subfield><subfield code="e">1-2</subfield><subfield code="b">03</subfield><subfield code="c">02</subfield><subfield code="h">77-88</subfield></datafield></record></collection>
|
author |
Ali, S. |
spellingShingle |
Ali, S. ddc 510 ssgn 11 misc Complex linearization misc Complex Lie symmetries misc Lie linearizability Linearizability criteria for systems of two second-order differential equations by complex methods |
authorStr |
Ali, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Linearizability criteria for systems of two second-order differential equations by complex methods Complex linearization Complex Lie symmetries Lie linearizability |
topic |
ddc 510 ssgn 11 misc Complex linearization misc Complex Lie symmetries misc Lie linearizability |
topic_unstemmed |
ddc 510 ssgn 11 misc Complex linearization misc Complex Lie symmetries misc Lie linearizability |
topic_browse |
ddc 510 ssgn 11 misc Complex linearization misc Complex Lie symmetries misc Lie linearizability |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Linearizability criteria for systems of two second-order differential equations by complex methods |
ctrlnum |
(DE-627)OLC205108923X (DE-He213)s11071-010-9912-2-p |
title_full |
Linearizability criteria for systems of two second-order differential equations by complex methods |
author_sort |
Ali, S. |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
77 |
author_browse |
Ali, S. Mahomed, F. M. Qadir, Asghar |
container_volume |
66 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Ali, S. |
doi_str_mv |
10.1007/s11071-010-9912-2 |
dewey-full |
510 |
title_sort |
linearizability criteria for systems of two second-order differential equations by complex methods |
title_auth |
Linearizability criteria for systems of two second-order differential equations by complex methods |
abstract |
Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. © Springer Science+Business Media B.V. 2011 |
abstractGer |
Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. © Springer Science+Business Media B.V. 2011 |
abstract_unstemmed |
Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed. © Springer Science+Business Media B.V. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_23 GBV_ILN_70 GBV_ILN_2006 |
container_issue |
1-2 |
title_short |
Linearizability criteria for systems of two second-order differential equations by complex methods |
url |
https://doi.org/10.1007/s11071-010-9912-2 |
remote_bool |
false |
author2 |
Mahomed, F. M. Qadir, Asghar |
author2Str |
Mahomed, F. M. Qadir, Asghar |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-010-9912-2 |
up_date |
2024-07-04T03:33:30.047Z |
_version_ |
1803617839407431680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205108923X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503225121.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-010-9912-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205108923X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-010-9912-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linearizability criteria for systems of two second-order differential equations by complex methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Lie’s linearizability criteria for scalar second-order ordinary differential equations had been extended to systems of second-order ordinary differential equations by using geometric methods. These methods not only yield the linearizing transformations but also the solutions of the nonlinear equations. Here, complex methods for a scalar ordinary differential equation are used for linearizing systems of two second-order ordinary and partial differential equations, which can use the power of the geometric method for writing the solutions. Illustrative examples of mechanical systems including the Lane–Emden type equations which have roots in the study of stellar structures are presented and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex linearization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Lie symmetries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie linearizability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahomed, F. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qadir, Asghar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">66(2011), 1-2 vom: 03. Feb., Seite 77-88</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:03</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:77-88</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-010-9912-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2011</subfield><subfield code="e">1-2</subfield><subfield code="b">03</subfield><subfield code="c">02</subfield><subfield code="h">77-88</subfield></datafield></record></collection>
|
score |
7.40221 |