Limit cycles and integrability in a class of system with a high-order critical point
Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three q...
Ausführliche Beschreibung
Autor*in: |
Feng, Li [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 73(2013), 1-2 vom: 02. März, Seite 665-670 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2013 ; number:1-2 ; day:02 ; month:03 ; pages:665-670 |
Links: |
---|
DOI / URN: |
10.1007/s11071-013-0820-0 |
---|
Katalog-ID: |
OLC2051097747 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051097747 | ||
003 | DE-627 | ||
005 | 20230503225818.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-013-0820-0 |2 doi | |
035 | |a (DE-627)OLC2051097747 | ||
035 | |a (DE-He213)s11071-013-0820-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Feng, Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Limit cycles and integrability in a class of system with a high-order critical point |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2013 | ||
520 | |a Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. | ||
650 | 4 | |a High-order critical point | |
650 | 4 | |a Nilpotent critical point | |
650 | 4 | |a Center | |
650 | 4 | |a Focus | |
650 | 4 | |a Bifurcation of limit cycle | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 73(2013), 1-2 vom: 02. März, Seite 665-670 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2013 |g number:1-2 |g day:02 |g month:03 |g pages:665-670 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-013-0820-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 73 |j 2013 |e 1-2 |b 02 |c 03 |h 665-670 |
author_variant |
l f lf |
---|---|
matchkey_str |
article:0924090X:2013----::iicceadnerbltialsossewtai |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11071-013-0820-0 doi (DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Feng, Li verfasserin aut Limit cycles and integrability in a class of system with a high-order critical point 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle Enthalten in Nonlinear dynamics Springer Netherlands, 1990 73(2013), 1-2 vom: 02. März, Seite 665-670 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 https://doi.org/10.1007/s11071-013-0820-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 73 2013 1-2 02 03 665-670 |
spelling |
10.1007/s11071-013-0820-0 doi (DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Feng, Li verfasserin aut Limit cycles and integrability in a class of system with a high-order critical point 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle Enthalten in Nonlinear dynamics Springer Netherlands, 1990 73(2013), 1-2 vom: 02. März, Seite 665-670 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 https://doi.org/10.1007/s11071-013-0820-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 73 2013 1-2 02 03 665-670 |
allfields_unstemmed |
10.1007/s11071-013-0820-0 doi (DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Feng, Li verfasserin aut Limit cycles and integrability in a class of system with a high-order critical point 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle Enthalten in Nonlinear dynamics Springer Netherlands, 1990 73(2013), 1-2 vom: 02. März, Seite 665-670 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 https://doi.org/10.1007/s11071-013-0820-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 73 2013 1-2 02 03 665-670 |
allfieldsGer |
10.1007/s11071-013-0820-0 doi (DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Feng, Li verfasserin aut Limit cycles and integrability in a class of system with a high-order critical point 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle Enthalten in Nonlinear dynamics Springer Netherlands, 1990 73(2013), 1-2 vom: 02. März, Seite 665-670 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 https://doi.org/10.1007/s11071-013-0820-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 73 2013 1-2 02 03 665-670 |
allfieldsSound |
10.1007/s11071-013-0820-0 doi (DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Feng, Li verfasserin aut Limit cycles and integrability in a class of system with a high-order critical point 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle Enthalten in Nonlinear dynamics Springer Netherlands, 1990 73(2013), 1-2 vom: 02. März, Seite 665-670 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 https://doi.org/10.1007/s11071-013-0820-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 73 2013 1-2 02 03 665-670 |
language |
English |
source |
Enthalten in Nonlinear dynamics 73(2013), 1-2 vom: 02. März, Seite 665-670 volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 |
sourceStr |
Enthalten in Nonlinear dynamics 73(2013), 1-2 vom: 02. März, Seite 665-670 volume:73 year:2013 number:1-2 day:02 month:03 pages:665-670 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Feng, Li @@aut@@ |
publishDateDaySort_date |
2013-03-02T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051097747 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051097747</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503225818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-013-0820-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051097747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-013-0820-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limit cycles and integrability in a class of system with a high-order critical point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-order critical point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent critical point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation of limit cycle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">73(2013), 1-2 vom: 02. März, Seite 665-670</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:665-670</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-013-0820-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="e">1-2</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">665-670</subfield></datafield></record></collection>
|
author |
Feng, Li |
spellingShingle |
Feng, Li ddc 510 ssgn 11 misc High-order critical point misc Nilpotent critical point misc Center misc Focus misc Bifurcation of limit cycle Limit cycles and integrability in a class of system with a high-order critical point |
authorStr |
Feng, Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Limit cycles and integrability in a class of system with a high-order critical point High-order critical point Nilpotent critical point Center Focus Bifurcation of limit cycle |
topic |
ddc 510 ssgn 11 misc High-order critical point misc Nilpotent critical point misc Center misc Focus misc Bifurcation of limit cycle |
topic_unstemmed |
ddc 510 ssgn 11 misc High-order critical point misc Nilpotent critical point misc Center misc Focus misc Bifurcation of limit cycle |
topic_browse |
ddc 510 ssgn 11 misc High-order critical point misc Nilpotent critical point misc Center misc Focus misc Bifurcation of limit cycle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Limit cycles and integrability in a class of system with a high-order critical point |
ctrlnum |
(DE-627)OLC2051097747 (DE-He213)s11071-013-0820-0-p |
title_full |
Limit cycles and integrability in a class of system with a high-order critical point |
author_sort |
Feng, Li |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
665 |
author_browse |
Feng, Li |
container_volume |
73 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Feng, Li |
doi_str_mv |
10.1007/s11071-013-0820-0 |
dewey-full |
510 |
title_sort |
limit cycles and integrability in a class of system with a high-order critical point |
title_auth |
Limit cycles and integrability in a class of system with a high-order critical point |
abstract |
Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. © Springer Science+Business Media Dordrecht 2013 |
abstractGer |
Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. © Springer Science+Business Media Dordrecht 2013 |
abstract_unstemmed |
Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved. © Springer Science+Business Media Dordrecht 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
1-2 |
title_short |
Limit cycles and integrability in a class of system with a high-order critical point |
url |
https://doi.org/10.1007/s11071-013-0820-0 |
remote_bool |
false |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-013-0820-0 |
up_date |
2024-07-04T03:34:39.946Z |
_version_ |
1803617912693456896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051097747</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503225818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-013-0820-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051097747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-013-0820-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limit cycles and integrability in a class of system with a high-order critical point</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a class of polynomial differential system with high-order critical point are investigated. The system could be changed into a system with a 3-order nilpotent critical point. Finally, an example was given, with the help of computer algebra system MATHEMATICA, the first three quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there three small amplitude limit cycles created from the 3-order nilpotent critical point is also proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-order critical point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent critical point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Focus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation of limit cycle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">73(2013), 1-2 vom: 02. März, Seite 665-670</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:665-670</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-013-0820-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="e">1-2</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">665-670</subfield></datafield></record></collection>
|
score |
7.401311 |