Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances
Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequenci...
Ausführliche Beschreibung
Autor*in: |
Monteil, Mélodie [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 75(2013), 1-2 vom: 28. Sept., Seite 175-200 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2013 ; number:1-2 ; day:28 ; month:09 ; pages:175-200 |
Links: |
---|
DOI / URN: |
10.1007/s11071-013-1057-7 |
---|
Katalog-ID: |
OLC2051100446 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051100446 | ||
003 | DE-627 | ||
005 | 20230503230009.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-013-1057-7 |2 doi | |
035 | |a (DE-627)OLC2051100446 | ||
035 | |a (DE-He213)s11071-013-1057-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Monteil, Mélodie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2013 | ||
520 | |a Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. | ||
650 | 4 | |a Internal resonance | |
650 | 4 | |a Nonlinear oscillations | |
650 | 4 | |a Multiple scales | |
700 | 1 | |a Touzé, Cyril |4 aut | |
700 | 1 | |a Thomas, Olivier |4 aut | |
700 | 1 | |a Benacchio, Simon |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 75(2013), 1-2 vom: 28. Sept., Seite 175-200 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2013 |g number:1-2 |g day:28 |g month:09 |g pages:175-200 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-013-1057-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 75 |j 2013 |e 1-2 |b 28 |c 09 |h 175-200 |
author_variant |
m m mm c t ct o t ot s b sb |
---|---|
matchkey_str |
article:0924090X:2013----::olnafrevbainotisrcuewttndiefeunishcss |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11071-013-1057-7 doi (DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Monteil, Mélodie verfasserin aut Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. Internal resonance Nonlinear oscillations Multiple scales Touzé, Cyril aut Thomas, Olivier aut Benacchio, Simon aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 75(2013), 1-2 vom: 28. Sept., Seite 175-200 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 https://doi.org/10.1007/s11071-013-1057-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 75 2013 1-2 28 09 175-200 |
spelling |
10.1007/s11071-013-1057-7 doi (DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Monteil, Mélodie verfasserin aut Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. Internal resonance Nonlinear oscillations Multiple scales Touzé, Cyril aut Thomas, Olivier aut Benacchio, Simon aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 75(2013), 1-2 vom: 28. Sept., Seite 175-200 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 https://doi.org/10.1007/s11071-013-1057-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 75 2013 1-2 28 09 175-200 |
allfields_unstemmed |
10.1007/s11071-013-1057-7 doi (DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Monteil, Mélodie verfasserin aut Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. Internal resonance Nonlinear oscillations Multiple scales Touzé, Cyril aut Thomas, Olivier aut Benacchio, Simon aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 75(2013), 1-2 vom: 28. Sept., Seite 175-200 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 https://doi.org/10.1007/s11071-013-1057-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 75 2013 1-2 28 09 175-200 |
allfieldsGer |
10.1007/s11071-013-1057-7 doi (DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Monteil, Mélodie verfasserin aut Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. Internal resonance Nonlinear oscillations Multiple scales Touzé, Cyril aut Thomas, Olivier aut Benacchio, Simon aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 75(2013), 1-2 vom: 28. Sept., Seite 175-200 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 https://doi.org/10.1007/s11071-013-1057-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 75 2013 1-2 28 09 175-200 |
allfieldsSound |
10.1007/s11071-013-1057-7 doi (DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Monteil, Mélodie verfasserin aut Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. Internal resonance Nonlinear oscillations Multiple scales Touzé, Cyril aut Thomas, Olivier aut Benacchio, Simon aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 75(2013), 1-2 vom: 28. Sept., Seite 175-200 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 https://doi.org/10.1007/s11071-013-1057-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 75 2013 1-2 28 09 175-200 |
language |
English |
source |
Enthalten in Nonlinear dynamics 75(2013), 1-2 vom: 28. Sept., Seite 175-200 volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 |
sourceStr |
Enthalten in Nonlinear dynamics 75(2013), 1-2 vom: 28. Sept., Seite 175-200 volume:75 year:2013 number:1-2 day:28 month:09 pages:175-200 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Internal resonance Nonlinear oscillations Multiple scales |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Monteil, Mélodie @@aut@@ Touzé, Cyril @@aut@@ Thomas, Olivier @@aut@@ Benacchio, Simon @@aut@@ |
publishDateDaySort_date |
2013-09-28T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051100446 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051100446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-013-1057-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051100446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-013-1057-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monteil, Mélodie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear oscillations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple scales</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Touzé, Cyril</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Olivier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benacchio, Simon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">75(2013), 1-2 vom: 28. Sept., Seite 175-200</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:175-200</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-013-1057-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2013</subfield><subfield code="e">1-2</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">175-200</subfield></datafield></record></collection>
|
author |
Monteil, Mélodie |
spellingShingle |
Monteil, Mélodie ddc 510 ssgn 11 misc Internal resonance misc Nonlinear oscillations misc Multiple scales Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
authorStr |
Monteil, Mélodie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances Internal resonance Nonlinear oscillations Multiple scales |
topic |
ddc 510 ssgn 11 misc Internal resonance misc Nonlinear oscillations misc Multiple scales |
topic_unstemmed |
ddc 510 ssgn 11 misc Internal resonance misc Nonlinear oscillations misc Multiple scales |
topic_browse |
ddc 510 ssgn 11 misc Internal resonance misc Nonlinear oscillations misc Multiple scales |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
ctrlnum |
(DE-627)OLC2051100446 (DE-He213)s11071-013-1057-7-p |
title_full |
Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
author_sort |
Monteil, Mélodie |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
175 |
author_browse |
Monteil, Mélodie Touzé, Cyril Thomas, Olivier Benacchio, Simon |
container_volume |
75 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Monteil, Mélodie |
doi_str_mv |
10.1007/s11071-013-1057-7 |
dewey-full |
510 |
title_sort |
nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
title_auth |
Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
abstract |
Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. © Springer Science+Business Media Dordrecht 2013 |
abstractGer |
Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. © Springer Science+Business Media Dordrecht 2013 |
abstract_unstemmed |
Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits. © Springer Science+Business Media Dordrecht 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
1-2 |
title_short |
Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances |
url |
https://doi.org/10.1007/s11071-013-1057-7 |
remote_bool |
false |
author2 |
Touzé, Cyril Thomas, Olivier Benacchio, Simon |
author2Str |
Touzé, Cyril Thomas, Olivier Benacchio, Simon |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-013-1057-7 |
up_date |
2024-07-04T03:35:01.625Z |
_version_ |
1803617935426584576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051100446</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-013-1057-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051100446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-013-1057-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monteil, Mélodie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second-order internal resonances resulting from a harmonic tuning of their natural frequencies. The first model considers three modes with eigenfrequencies ω1, ω2, and ω3 such that ω3≃2ω2≃4ω1, thus displaying a 1:2:4 internal resonance. The second system exhibits a 1:2:2 internal resonance, so that the frequency relationship reads ω3≃ω2≃2ω1. Multiple scales method is used to solve analytically the forced oscillations for the two models excited on each degree of freedom at primary resonance. A thorough analytical study is proposed, with a particular emphasis on the stability of the solutions. Parametric investigations allow to get a complete picture of the dynamics of the two systems. Results are systematically compared to the classical 1:2 resonance, in order to understand how the presence of a third oscillator modifies the nonlinear dynamics and favors the presence of unstable periodic orbits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear oscillations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple scales</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Touzé, Cyril</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Olivier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benacchio, Simon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">75(2013), 1-2 vom: 28. Sept., Seite 175-200</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:175-200</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-013-1057-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2013</subfield><subfield code="e">1-2</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">175-200</subfield></datafield></record></collection>
|
score |
7.4026155 |