Multiple Wada basins with common boundaries in nonlinear driven oscillators
Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on...
Ausführliche Beschreibung
Autor*in: |
Zhang, Yongxiang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 79(2014), 4 vom: 14. Dez., Seite 2667-2674 |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2014 ; number:4 ; day:14 ; month:12 ; pages:2667-2674 |
Links: |
---|
DOI / URN: |
10.1007/s11071-014-1839-6 |
---|
Katalog-ID: |
OLC2051107769 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051107769 | ||
003 | DE-627 | ||
005 | 20230503230615.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-014-1839-6 |2 doi | |
035 | |a (DE-627)OLC2051107769 | ||
035 | |a (DE-He213)s11071-014-1839-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Zhang, Yongxiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiple Wada basins with common boundaries in nonlinear driven oscillators |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2014 | ||
520 | |a Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. | ||
650 | 4 | |a Wada basins | |
650 | 4 | |a Fractal basins | |
650 | 4 | |a Attractors | |
650 | 4 | |a Shallow arch | |
650 | 4 | |a Unpredictability | |
700 | 1 | |a Zhang, Huaguang |4 aut | |
700 | 1 | |a Gao, Wenzhong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 79(2014), 4 vom: 14. Dez., Seite 2667-2674 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:79 |g year:2014 |g number:4 |g day:14 |g month:12 |g pages:2667-2674 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-014-1839-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 79 |j 2014 |e 4 |b 14 |c 12 |h 2667-2674 |
author_variant |
y z yz h z hz w g wg |
---|---|
matchkey_str |
article:0924090X:2014----::utpeaaaisihomnonaisnolna |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11071-014-1839-6 doi (DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Yongxiang verfasserin aut Multiple Wada basins with common boundaries in nonlinear driven oscillators 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. Wada basins Fractal basins Attractors Shallow arch Unpredictability Zhang, Huaguang aut Gao, Wenzhong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 79(2014), 4 vom: 14. Dez., Seite 2667-2674 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 https://doi.org/10.1007/s11071-014-1839-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 79 2014 4 14 12 2667-2674 |
spelling |
10.1007/s11071-014-1839-6 doi (DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Yongxiang verfasserin aut Multiple Wada basins with common boundaries in nonlinear driven oscillators 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. Wada basins Fractal basins Attractors Shallow arch Unpredictability Zhang, Huaguang aut Gao, Wenzhong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 79(2014), 4 vom: 14. Dez., Seite 2667-2674 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 https://doi.org/10.1007/s11071-014-1839-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 79 2014 4 14 12 2667-2674 |
allfields_unstemmed |
10.1007/s11071-014-1839-6 doi (DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Yongxiang verfasserin aut Multiple Wada basins with common boundaries in nonlinear driven oscillators 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. Wada basins Fractal basins Attractors Shallow arch Unpredictability Zhang, Huaguang aut Gao, Wenzhong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 79(2014), 4 vom: 14. Dez., Seite 2667-2674 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 https://doi.org/10.1007/s11071-014-1839-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 79 2014 4 14 12 2667-2674 |
allfieldsGer |
10.1007/s11071-014-1839-6 doi (DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Yongxiang verfasserin aut Multiple Wada basins with common boundaries in nonlinear driven oscillators 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. Wada basins Fractal basins Attractors Shallow arch Unpredictability Zhang, Huaguang aut Gao, Wenzhong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 79(2014), 4 vom: 14. Dez., Seite 2667-2674 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 https://doi.org/10.1007/s11071-014-1839-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 79 2014 4 14 12 2667-2674 |
allfieldsSound |
10.1007/s11071-014-1839-6 doi (DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Yongxiang verfasserin aut Multiple Wada basins with common boundaries in nonlinear driven oscillators 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2014 Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. Wada basins Fractal basins Attractors Shallow arch Unpredictability Zhang, Huaguang aut Gao, Wenzhong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 79(2014), 4 vom: 14. Dez., Seite 2667-2674 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 https://doi.org/10.1007/s11071-014-1839-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 79 2014 4 14 12 2667-2674 |
language |
English |
source |
Enthalten in Nonlinear dynamics 79(2014), 4 vom: 14. Dez., Seite 2667-2674 volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 |
sourceStr |
Enthalten in Nonlinear dynamics 79(2014), 4 vom: 14. Dez., Seite 2667-2674 volume:79 year:2014 number:4 day:14 month:12 pages:2667-2674 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wada basins Fractal basins Attractors Shallow arch Unpredictability |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Zhang, Yongxiang @@aut@@ Zhang, Huaguang @@aut@@ Gao, Wenzhong @@aut@@ |
publishDateDaySort_date |
2014-12-14T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051107769 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051107769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230615.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-014-1839-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051107769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-014-1839-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yongxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple Wada basins with common boundaries in nonlinear driven oscillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wada basins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal basins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow arch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unpredictability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Huaguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Wenzhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">79(2014), 4 vom: 14. Dez., Seite 2667-2674</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2667-2674</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-014-1839-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">2667-2674</subfield></datafield></record></collection>
|
author |
Zhang, Yongxiang |
spellingShingle |
Zhang, Yongxiang ddc 510 ssgn 11 misc Wada basins misc Fractal basins misc Attractors misc Shallow arch misc Unpredictability Multiple Wada basins with common boundaries in nonlinear driven oscillators |
authorStr |
Zhang, Yongxiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Multiple Wada basins with common boundaries in nonlinear driven oscillators Wada basins Fractal basins Attractors Shallow arch Unpredictability |
topic |
ddc 510 ssgn 11 misc Wada basins misc Fractal basins misc Attractors misc Shallow arch misc Unpredictability |
topic_unstemmed |
ddc 510 ssgn 11 misc Wada basins misc Fractal basins misc Attractors misc Shallow arch misc Unpredictability |
topic_browse |
ddc 510 ssgn 11 misc Wada basins misc Fractal basins misc Attractors misc Shallow arch misc Unpredictability |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Multiple Wada basins with common boundaries in nonlinear driven oscillators |
ctrlnum |
(DE-627)OLC2051107769 (DE-He213)s11071-014-1839-6-p |
title_full |
Multiple Wada basins with common boundaries in nonlinear driven oscillators |
author_sort |
Zhang, Yongxiang |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
2667 |
author_browse |
Zhang, Yongxiang Zhang, Huaguang Gao, Wenzhong |
container_volume |
79 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Yongxiang |
doi_str_mv |
10.1007/s11071-014-1839-6 |
dewey-full |
510 |
title_sort |
multiple wada basins with common boundaries in nonlinear driven oscillators |
title_auth |
Multiple Wada basins with common boundaries in nonlinear driven oscillators |
abstract |
Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. © Springer Science+Business Media Dordrecht 2014 |
abstractGer |
Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. © Springer Science+Business Media Dordrecht 2014 |
abstract_unstemmed |
Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator. © Springer Science+Business Media Dordrecht 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
Multiple Wada basins with common boundaries in nonlinear driven oscillators |
url |
https://doi.org/10.1007/s11071-014-1839-6 |
remote_bool |
false |
author2 |
Zhang, Huaguang Gao, Wenzhong |
author2Str |
Zhang, Huaguang Gao, Wenzhong |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-014-1839-6 |
up_date |
2024-07-04T03:35:59.796Z |
_version_ |
1803617996429590528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051107769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230615.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-014-1839-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051107769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-014-1839-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yongxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple Wada basins with common boundaries in nonlinear driven oscillators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In driven oscillators, examples are shown that every boundary point of one basin is on the boundary of the two remaining basins and all three boundaries of these basins coincide. When there are more than five basins of attraction, is it possible that every boundary point of one basin is on the boundary of other basins? Is it possible that all basin boundaries coincide? This paper describes some numerical experiments giving evidence of seven Wada basin boundaries and all seven basin boundaries coincide for a driven shallow arch oscillator. The results are verified by the basin cell theory. It suggests that small noises can lead to final state sensitivity and uncertain dynamics in the driven oscillator.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wada basins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractal basins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shallow arch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unpredictability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Huaguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Wenzhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">79(2014), 4 vom: 14. Dez., Seite 2667-2674</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2667-2674</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-014-1839-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">2667-2674</subfield></datafield></record></collection>
|
score |
7.4007034 |