Modelling and analysis of spatio-temporal dynamics of a marine ecosystem
Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton in...
Ausführliche Beschreibung
Autor*in: |
Chakraborty, Kunal [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 81(2015), 4 vom: 01. Mai, Seite 1895-1906 |
---|---|
Übergeordnetes Werk: |
volume:81 ; year:2015 ; number:4 ; day:01 ; month:05 ; pages:1895-1906 |
Links: |
---|
DOI / URN: |
10.1007/s11071-015-2114-1 |
---|
Katalog-ID: |
OLC205111076X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205111076X | ||
003 | DE-627 | ||
005 | 20230503230836.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-015-2114-1 |2 doi | |
035 | |a (DE-627)OLC205111076X | ||
035 | |a (DE-He213)s11071-015-2114-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Chakraborty, Kunal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2015 | ||
520 | |a Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. | ||
650 | 4 | |a Reaction–diffusion equations | |
650 | 4 | |a Marine ecosystem | |
650 | 4 | |a Diffusion-driven instability | |
650 | 4 | |a Spatio-temporal dynamics | |
650 | 4 | |a Patchiness | |
700 | 1 | |a Manthena, Vamsi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 81(2015), 4 vom: 01. Mai, Seite 1895-1906 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:81 |g year:2015 |g number:4 |g day:01 |g month:05 |g pages:1895-1906 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-015-2114-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 81 |j 2015 |e 4 |b 01 |c 05 |h 1895-1906 |
author_variant |
k c kc v m vm |
---|---|
matchkey_str |
article:0924090X:2015----::oelnadnlssfptoeprlyais |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11071-015-2114-1 doi (DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Chakraborty, Kunal verfasserin aut Modelling and analysis of spatio-temporal dynamics of a marine ecosystem 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2015 Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness Manthena, Vamsi aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 81(2015), 4 vom: 01. Mai, Seite 1895-1906 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 https://doi.org/10.1007/s11071-015-2114-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 81 2015 4 01 05 1895-1906 |
spelling |
10.1007/s11071-015-2114-1 doi (DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Chakraborty, Kunal verfasserin aut Modelling and analysis of spatio-temporal dynamics of a marine ecosystem 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2015 Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness Manthena, Vamsi aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 81(2015), 4 vom: 01. Mai, Seite 1895-1906 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 https://doi.org/10.1007/s11071-015-2114-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 81 2015 4 01 05 1895-1906 |
allfields_unstemmed |
10.1007/s11071-015-2114-1 doi (DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Chakraborty, Kunal verfasserin aut Modelling and analysis of spatio-temporal dynamics of a marine ecosystem 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2015 Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness Manthena, Vamsi aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 81(2015), 4 vom: 01. Mai, Seite 1895-1906 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 https://doi.org/10.1007/s11071-015-2114-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 81 2015 4 01 05 1895-1906 |
allfieldsGer |
10.1007/s11071-015-2114-1 doi (DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Chakraborty, Kunal verfasserin aut Modelling and analysis of spatio-temporal dynamics of a marine ecosystem 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2015 Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness Manthena, Vamsi aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 81(2015), 4 vom: 01. Mai, Seite 1895-1906 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 https://doi.org/10.1007/s11071-015-2114-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 81 2015 4 01 05 1895-1906 |
allfieldsSound |
10.1007/s11071-015-2114-1 doi (DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Chakraborty, Kunal verfasserin aut Modelling and analysis of spatio-temporal dynamics of a marine ecosystem 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2015 Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness Manthena, Vamsi aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 81(2015), 4 vom: 01. Mai, Seite 1895-1906 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 https://doi.org/10.1007/s11071-015-2114-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 81 2015 4 01 05 1895-1906 |
language |
English |
source |
Enthalten in Nonlinear dynamics 81(2015), 4 vom: 01. Mai, Seite 1895-1906 volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 |
sourceStr |
Enthalten in Nonlinear dynamics 81(2015), 4 vom: 01. Mai, Seite 1895-1906 volume:81 year:2015 number:4 day:01 month:05 pages:1895-1906 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Chakraborty, Kunal @@aut@@ Manthena, Vamsi @@aut@@ |
publishDateDaySort_date |
2015-05-01T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC205111076X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205111076X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230836.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-015-2114-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205111076X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-015-2114-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chakraborty, Kunal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling and analysis of spatio-temporal dynamics of a marine ecosystem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction–diffusion equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marine ecosystem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatio-temporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patchiness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manthena, Vamsi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">81(2015), 4 vom: 01. Mai, Seite 1895-1906</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1895-1906</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-015-2114-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">05</subfield><subfield code="h">1895-1906</subfield></datafield></record></collection>
|
author |
Chakraborty, Kunal |
spellingShingle |
Chakraborty, Kunal ddc 510 ssgn 11 misc Reaction–diffusion equations misc Marine ecosystem misc Diffusion-driven instability misc Spatio-temporal dynamics misc Patchiness Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
authorStr |
Chakraborty, Kunal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Modelling and analysis of spatio-temporal dynamics of a marine ecosystem Reaction–diffusion equations Marine ecosystem Diffusion-driven instability Spatio-temporal dynamics Patchiness |
topic |
ddc 510 ssgn 11 misc Reaction–diffusion equations misc Marine ecosystem misc Diffusion-driven instability misc Spatio-temporal dynamics misc Patchiness |
topic_unstemmed |
ddc 510 ssgn 11 misc Reaction–diffusion equations misc Marine ecosystem misc Diffusion-driven instability misc Spatio-temporal dynamics misc Patchiness |
topic_browse |
ddc 510 ssgn 11 misc Reaction–diffusion equations misc Marine ecosystem misc Diffusion-driven instability misc Spatio-temporal dynamics misc Patchiness |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
ctrlnum |
(DE-627)OLC205111076X (DE-He213)s11071-015-2114-1-p |
title_full |
Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
author_sort |
Chakraborty, Kunal |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1895 |
author_browse |
Chakraborty, Kunal Manthena, Vamsi |
container_volume |
81 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Chakraborty, Kunal |
doi_str_mv |
10.1007/s11071-015-2114-1 |
dewey-full |
510 |
title_sort |
modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
title_auth |
Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
abstract |
Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. © Springer Science+Business Media Dordrecht 2015 |
abstractGer |
Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. © Springer Science+Business Media Dordrecht 2015 |
abstract_unstemmed |
Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments. © Springer Science+Business Media Dordrecht 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
Modelling and analysis of spatio-temporal dynamics of a marine ecosystem |
url |
https://doi.org/10.1007/s11071-015-2114-1 |
remote_bool |
false |
author2 |
Manthena, Vamsi |
author2Str |
Manthena, Vamsi |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-015-2114-1 |
up_date |
2024-07-04T03:36:23.403Z |
_version_ |
1803618021184372736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205111076X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503230836.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-015-2114-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205111076X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-015-2114-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chakraborty, Kunal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling and analysis of spatio-temporal dynamics of a marine ecosystem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper examines the spatio-temporal dynamics of a marine ecosystem. The system is described by two reaction–diffusion equations. We consider a phytoplankton–zooplankton system with Ivlev-type grazing function. The dynamics of the reaction–diffusion system of phytoplankton–zooplankton interaction has been studied with both constant and variable diffusion coefficients. Periodic oscillations of the phytoplankton and zooplankton populations are shown with constant and variable diffusion coefficients. In order to obtain spatio-temporal patterns, we perform numerical simulations of the coupled system describing phytoplankton–zooplankton dynamics in the presence of diffusive forces. We explain how the concentration of species changes due to local reactions and diffusion. Our results suggest that patchiness is one of the basic characteristics of the functioning of an ecological system. Two-dimensional spatial patterns of phytoplankton–zooplankton dynamics are self-organized and, therefore, can be considered to provide a theoretical framework to understand patchiness in marine environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction–diffusion equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marine ecosystem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion-driven instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatio-temporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Patchiness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manthena, Vamsi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">81(2015), 4 vom: 01. Mai, Seite 1895-1906</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1895-1906</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-015-2114-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">05</subfield><subfield code="h">1895-1906</subfield></datafield></record></collection>
|
score |
7.4006968 |