Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance
Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to i...
Ausführliche Beschreibung
Autor*in: |
Li, Xuehui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V., part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 93(2018), 2 vom: 17. Apr., Seite 443-451 |
---|---|
Übergeordnetes Werk: |
volume:93 ; year:2018 ; number:2 ; day:17 ; month:04 ; pages:443-451 |
Links: |
---|
DOI / URN: |
10.1007/s11071-018-4202-5 |
---|
Katalog-ID: |
OLC2051131996 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051131996 | ||
003 | DE-627 | ||
005 | 20230503232342.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-018-4202-5 |2 doi | |
035 | |a (DE-627)OLC2051131996 | ||
035 | |a (DE-He213)s11071-018-4202-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Li, Xuehui |e verfasserin |0 (orcid)0000-0001-6619-2656 |4 aut | |
245 | 1 | 0 | |a Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V., part of Springer Nature 2018 | ||
520 | |a Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. | ||
650 | 4 | |a Tracking control | |
650 | 4 | |a Obstacle avoidance | |
650 | 4 | |a Sliding mode control | |
650 | 4 | |a Finite-time control | |
700 | 1 | |a Song, Shenmin |4 aut | |
700 | 1 | |a Guo, Yong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 93(2018), 2 vom: 17. Apr., Seite 443-451 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:93 |g year:2018 |g number:2 |g day:17 |g month:04 |g pages:443-451 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-018-4202-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 93 |j 2018 |e 2 |b 17 |c 04 |h 443-451 |
author_variant |
x l xl s s ss y g yg |
---|---|
matchkey_str |
article:0924090X:2018----::outiieiercigotofruelgagsses |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11071-018-4202-5 doi (DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Li, Xuehui verfasserin (orcid)0000-0001-6619-2656 aut Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. Tracking control Obstacle avoidance Sliding mode control Finite-time control Song, Shenmin aut Guo, Yong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 93(2018), 2 vom: 17. Apr., Seite 443-451 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:93 year:2018 number:2 day:17 month:04 pages:443-451 https://doi.org/10.1007/s11071-018-4202-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 93 2018 2 17 04 443-451 |
spelling |
10.1007/s11071-018-4202-5 doi (DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Li, Xuehui verfasserin (orcid)0000-0001-6619-2656 aut Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. Tracking control Obstacle avoidance Sliding mode control Finite-time control Song, Shenmin aut Guo, Yong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 93(2018), 2 vom: 17. Apr., Seite 443-451 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:93 year:2018 number:2 day:17 month:04 pages:443-451 https://doi.org/10.1007/s11071-018-4202-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 93 2018 2 17 04 443-451 |
allfields_unstemmed |
10.1007/s11071-018-4202-5 doi (DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Li, Xuehui verfasserin (orcid)0000-0001-6619-2656 aut Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. Tracking control Obstacle avoidance Sliding mode control Finite-time control Song, Shenmin aut Guo, Yong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 93(2018), 2 vom: 17. Apr., Seite 443-451 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:93 year:2018 number:2 day:17 month:04 pages:443-451 https://doi.org/10.1007/s11071-018-4202-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 93 2018 2 17 04 443-451 |
allfieldsGer |
10.1007/s11071-018-4202-5 doi (DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Li, Xuehui verfasserin (orcid)0000-0001-6619-2656 aut Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. Tracking control Obstacle avoidance Sliding mode control Finite-time control Song, Shenmin aut Guo, Yong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 93(2018), 2 vom: 17. Apr., Seite 443-451 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:93 year:2018 number:2 day:17 month:04 pages:443-451 https://doi.org/10.1007/s11071-018-4202-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 93 2018 2 17 04 443-451 |
allfieldsSound |
10.1007/s11071-018-4202-5 doi (DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Li, Xuehui verfasserin (orcid)0000-0001-6619-2656 aut Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. Tracking control Obstacle avoidance Sliding mode control Finite-time control Song, Shenmin aut Guo, Yong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 93(2018), 2 vom: 17. Apr., Seite 443-451 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:93 year:2018 number:2 day:17 month:04 pages:443-451 https://doi.org/10.1007/s11071-018-4202-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 93 2018 2 17 04 443-451 |
language |
English |
source |
Enthalten in Nonlinear dynamics 93(2018), 2 vom: 17. Apr., Seite 443-451 volume:93 year:2018 number:2 day:17 month:04 pages:443-451 |
sourceStr |
Enthalten in Nonlinear dynamics 93(2018), 2 vom: 17. Apr., Seite 443-451 volume:93 year:2018 number:2 day:17 month:04 pages:443-451 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tracking control Obstacle avoidance Sliding mode control Finite-time control |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Li, Xuehui @@aut@@ Song, Shenmin @@aut@@ Guo, Yong @@aut@@ |
publishDateDaySort_date |
2018-04-17T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051131996 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051131996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-018-4202-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051131996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-018-4202-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xuehui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6619-2656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Obstacle avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sliding mode control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-time control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Shenmin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">93(2018), 2 vom: 17. Apr., Seite 443-451</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:443-451</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-018-4202-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield><subfield code="h">443-451</subfield></datafield></record></collection>
|
author |
Li, Xuehui |
spellingShingle |
Li, Xuehui ddc 510 ssgn 11 misc Tracking control misc Obstacle avoidance misc Sliding mode control misc Finite-time control Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
authorStr |
Li, Xuehui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance Tracking control Obstacle avoidance Sliding mode control Finite-time control |
topic |
ddc 510 ssgn 11 misc Tracking control misc Obstacle avoidance misc Sliding mode control misc Finite-time control |
topic_unstemmed |
ddc 510 ssgn 11 misc Tracking control misc Obstacle avoidance misc Sliding mode control misc Finite-time control |
topic_browse |
ddc 510 ssgn 11 misc Tracking control misc Obstacle avoidance misc Sliding mode control misc Finite-time control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
ctrlnum |
(DE-627)OLC2051131996 (DE-He213)s11071-018-4202-5-p |
title_full |
Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
author_sort |
Li, Xuehui |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
443 |
author_browse |
Li, Xuehui Song, Shenmin Guo, Yong |
container_volume |
93 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Xuehui |
doi_str_mv |
10.1007/s11071-018-4202-5 |
normlink |
(ORCID)0000-0001-6619-2656 |
normlink_prefix_str_mv |
(orcid)0000-0001-6619-2656 |
dewey-full |
510 |
title_sort |
robust finite-time tracking control for euler–lagrange systems with obstacle avoidance |
title_auth |
Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
abstract |
Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
abstractGer |
Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
abstract_unstemmed |
Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies. © Springer Science+Business Media B.V., part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance |
url |
https://doi.org/10.1007/s11071-018-4202-5 |
remote_bool |
false |
author2 |
Song, Shenmin Guo, Yong |
author2Str |
Song, Shenmin Guo, Yong |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-018-4202-5 |
up_date |
2024-07-04T03:39:19.153Z |
_version_ |
1803618205479993344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051131996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-018-4202-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051131996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-018-4202-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xuehui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6619-2656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracking control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Obstacle avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sliding mode control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-time control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Shenmin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">93(2018), 2 vom: 17. Apr., Seite 443-451</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:93</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:443-451</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-018-4202-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">93</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield><subfield code="h">443-451</subfield></datafield></record></collection>
|
score |
7.399971 |