Amplitude death criteria for coupled complex Ginzburg–Landau systems
Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on osci...
Ausführliche Beschreibung
Autor*in: |
Van Gorder, Robert A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 97(2019), 1 vom: 04. Mai, Seite 151-159 |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2019 ; number:1 ; day:04 ; month:05 ; pages:151-159 |
Links: |
---|
DOI / URN: |
10.1007/s11071-019-04961-3 |
---|
Katalog-ID: |
OLC2051139350 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051139350 | ||
003 | DE-627 | ||
005 | 20230503232627.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-019-04961-3 |2 doi | |
035 | |a (DE-627)OLC2051139350 | ||
035 | |a (DE-He213)s11071-019-04961-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Van Gorder, Robert A. |e verfasserin |0 (orcid)0000-0002-8506-3961 |4 aut | |
245 | 1 | 0 | |a Amplitude death criteria for coupled complex Ginzburg–Landau systems |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2019 | ||
520 | |a Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. | ||
650 | 4 | |a Coupled complex Ginzburg–Landau systems | |
650 | 4 | |a Amplitude death | |
650 | 4 | |a Cross-phase modulation | |
650 | 4 | |a Asymmetry | |
700 | 1 | |a Krause, Andrew L. |4 aut | |
700 | 1 | |a Kwiecinski, James A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 97(2019), 1 vom: 04. Mai, Seite 151-159 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:97 |g year:2019 |g number:1 |g day:04 |g month:05 |g pages:151-159 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-019-04961-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 97 |j 2019 |e 1 |b 04 |c 05 |h 151-159 |
author_variant |
g r a v gra grav a l k al alk j a k ja jak |
---|---|
matchkey_str |
article:0924090X:2019----::mltddahrtraoculdopegnb |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11071-019-04961-3 doi (DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Van Gorder, Robert A. verfasserin (orcid)0000-0002-8506-3961 aut Amplitude death criteria for coupled complex Ginzburg–Landau systems 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry Krause, Andrew L. aut Kwiecinski, James A. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 1 vom: 04. Mai, Seite 151-159 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:1 day:04 month:05 pages:151-159 https://doi.org/10.1007/s11071-019-04961-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 1 04 05 151-159 |
spelling |
10.1007/s11071-019-04961-3 doi (DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Van Gorder, Robert A. verfasserin (orcid)0000-0002-8506-3961 aut Amplitude death criteria for coupled complex Ginzburg–Landau systems 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry Krause, Andrew L. aut Kwiecinski, James A. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 1 vom: 04. Mai, Seite 151-159 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:1 day:04 month:05 pages:151-159 https://doi.org/10.1007/s11071-019-04961-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 1 04 05 151-159 |
allfields_unstemmed |
10.1007/s11071-019-04961-3 doi (DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Van Gorder, Robert A. verfasserin (orcid)0000-0002-8506-3961 aut Amplitude death criteria for coupled complex Ginzburg–Landau systems 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry Krause, Andrew L. aut Kwiecinski, James A. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 1 vom: 04. Mai, Seite 151-159 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:1 day:04 month:05 pages:151-159 https://doi.org/10.1007/s11071-019-04961-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 1 04 05 151-159 |
allfieldsGer |
10.1007/s11071-019-04961-3 doi (DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Van Gorder, Robert A. verfasserin (orcid)0000-0002-8506-3961 aut Amplitude death criteria for coupled complex Ginzburg–Landau systems 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry Krause, Andrew L. aut Kwiecinski, James A. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 1 vom: 04. Mai, Seite 151-159 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:1 day:04 month:05 pages:151-159 https://doi.org/10.1007/s11071-019-04961-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 1 04 05 151-159 |
allfieldsSound |
10.1007/s11071-019-04961-3 doi (DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Van Gorder, Robert A. verfasserin (orcid)0000-0002-8506-3961 aut Amplitude death criteria for coupled complex Ginzburg–Landau systems 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry Krause, Andrew L. aut Kwiecinski, James A. aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 1 vom: 04. Mai, Seite 151-159 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:1 day:04 month:05 pages:151-159 https://doi.org/10.1007/s11071-019-04961-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 1 04 05 151-159 |
language |
English |
source |
Enthalten in Nonlinear dynamics 97(2019), 1 vom: 04. Mai, Seite 151-159 volume:97 year:2019 number:1 day:04 month:05 pages:151-159 |
sourceStr |
Enthalten in Nonlinear dynamics 97(2019), 1 vom: 04. Mai, Seite 151-159 volume:97 year:2019 number:1 day:04 month:05 pages:151-159 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Van Gorder, Robert A. @@aut@@ Krause, Andrew L. @@aut@@ Kwiecinski, James A. @@aut@@ |
publishDateDaySort_date |
2019-05-04T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051139350 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051139350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232627.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-04961-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051139350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-04961-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Gorder, Robert A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8506-3961</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Amplitude death criteria for coupled complex Ginzburg–Landau systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled complex Ginzburg–Landau systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplitude death</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-phase modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krause, Andrew L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwiecinski, James A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">97(2019), 1 vom: 04. Mai, Seite 151-159</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:151-159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-04961-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">05</subfield><subfield code="h">151-159</subfield></datafield></record></collection>
|
author |
Van Gorder, Robert A. |
spellingShingle |
Van Gorder, Robert A. ddc 510 ssgn 11 misc Coupled complex Ginzburg–Landau systems misc Amplitude death misc Cross-phase modulation misc Asymmetry Amplitude death criteria for coupled complex Ginzburg–Landau systems |
authorStr |
Van Gorder, Robert A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Amplitude death criteria for coupled complex Ginzburg–Landau systems Coupled complex Ginzburg–Landau systems Amplitude death Cross-phase modulation Asymmetry |
topic |
ddc 510 ssgn 11 misc Coupled complex Ginzburg–Landau systems misc Amplitude death misc Cross-phase modulation misc Asymmetry |
topic_unstemmed |
ddc 510 ssgn 11 misc Coupled complex Ginzburg–Landau systems misc Amplitude death misc Cross-phase modulation misc Asymmetry |
topic_browse |
ddc 510 ssgn 11 misc Coupled complex Ginzburg–Landau systems misc Amplitude death misc Cross-phase modulation misc Asymmetry |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Amplitude death criteria for coupled complex Ginzburg–Landau systems |
ctrlnum |
(DE-627)OLC2051139350 (DE-He213)s11071-019-04961-3-p |
title_full |
Amplitude death criteria for coupled complex Ginzburg–Landau systems |
author_sort |
Van Gorder, Robert A. |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
151 |
author_browse |
Van Gorder, Robert A. Krause, Andrew L. Kwiecinski, James A. |
container_volume |
97 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Van Gorder, Robert A. |
doi_str_mv |
10.1007/s11071-019-04961-3 |
normlink |
(ORCID)0000-0002-8506-3961 |
normlink_prefix_str_mv |
(orcid)0000-0002-8506-3961 |
dewey-full |
510 |
title_sort |
amplitude death criteria for coupled complex ginzburg–landau systems |
title_auth |
Amplitude death criteria for coupled complex Ginzburg–Landau systems |
abstract |
Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. © Springer Nature B.V. 2019 |
abstractGer |
Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. © Springer Nature B.V. 2019 |
abstract_unstemmed |
Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results. © Springer Nature B.V. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
1 |
title_short |
Amplitude death criteria for coupled complex Ginzburg–Landau systems |
url |
https://doi.org/10.1007/s11071-019-04961-3 |
remote_bool |
false |
author2 |
Krause, Andrew L. Kwiecinski, James A. |
author2Str |
Krause, Andrew L. Kwiecinski, James A. |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-019-04961-3 |
up_date |
2024-07-04T03:40:22.283Z |
_version_ |
1803618271677644800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051139350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232627.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-04961-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051139350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-04961-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Gorder, Robert A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8506-3961</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Amplitude death criteria for coupled complex Ginzburg–Landau systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Amplitude death, which occurs in a system when one or more macroscopic wavefunctions collapse to zero, has been observed in mutually coupled solid-state lasers, analog circuits, and thermoacoustic oscillators, to name a few applications. While studies have considered amplitude death on oscillator systems and in externally forced complex Ginzburg–Landau systems, a route to amplitude death has not been studied in autonomous continuum systems. We derive simple analytic conditions for the onset of amplitude death of one macroscopic wavefunction in a system of two coupled complex Ginzburg–Landau equations with general nonlinear self- and cross-interaction terms. Our results give a more general theoretical underpinning for recent amplitude death results reported in the literature, and suggest an approach for tuning parameters in such systems so that they either permit or prohibit amplitude death of a wavefunction (depending on the application). Numerical simulation of the coupled complex Ginzburg–Landau equations, for example, including cubic, cubic–quintic, and saturable nonlinearities, is used to illustrate the analytical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled complex Ginzburg–Landau systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amplitude death</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-phase modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymmetry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krause, Andrew L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwiecinski, James A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">97(2019), 1 vom: 04. Mai, Seite 151-159</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:151-159</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-04961-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">05</subfield><subfield code="h">151-159</subfield></datafield></record></collection>
|
score |
7.401515 |