Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type
Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibr...
Ausführliche Beschreibung
Autor*in: |
Zhang, Chunrui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 97(2019), 2 vom: 21. Juni, Seite 1451-1476 |
---|---|
Übergeordnetes Werk: |
volume:97 ; year:2019 ; number:2 ; day:21 ; month:06 ; pages:1451-1476 |
Links: |
---|
DOI / URN: |
10.1007/s11071-019-05065-8 |
---|
Katalog-ID: |
OLC2051139717 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051139717 | ||
003 | DE-627 | ||
005 | 20230503232640.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-019-05065-8 |2 doi | |
035 | |a (DE-627)OLC2051139717 | ||
035 | |a (DE-He213)s11071-019-05065-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Zhang, Chunrui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2019 | ||
520 | |a Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. | ||
650 | 4 | |a FitzHugh–Nagumo | |
650 | 4 | |a Diffusion | |
650 | 4 | |a Coupling | |
650 | 4 | |a Turing–Hopf bifurcation | |
650 | 4 | |a Turing–Hopf–Turing bifurcation | |
650 | 4 | |a Spatial resonance | |
650 | 4 | |a Normal forms | |
700 | 1 | |a Ke, Ai |4 aut | |
700 | 1 | |a Zheng, Baodong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 97(2019), 2 vom: 21. Juni, Seite 1451-1476 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:97 |g year:2019 |g number:2 |g day:21 |g month:06 |g pages:1451-1476 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-019-05065-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 97 |j 2019 |e 2 |b 21 |c 06 |h 1451-1476 |
author_variant |
c z cz a k ak b z bz |
---|---|
matchkey_str |
article:0924090X:2019----::atrsfneatooculdecinifsossesf |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11071-019-05065-8 doi (DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Chunrui verfasserin aut Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms Ke, Ai aut Zheng, Baodong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 2 vom: 21. Juni, Seite 1451-1476 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 https://doi.org/10.1007/s11071-019-05065-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 2 21 06 1451-1476 |
spelling |
10.1007/s11071-019-05065-8 doi (DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Chunrui verfasserin aut Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms Ke, Ai aut Zheng, Baodong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 2 vom: 21. Juni, Seite 1451-1476 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 https://doi.org/10.1007/s11071-019-05065-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 2 21 06 1451-1476 |
allfields_unstemmed |
10.1007/s11071-019-05065-8 doi (DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Chunrui verfasserin aut Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms Ke, Ai aut Zheng, Baodong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 2 vom: 21. Juni, Seite 1451-1476 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 https://doi.org/10.1007/s11071-019-05065-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 2 21 06 1451-1476 |
allfieldsGer |
10.1007/s11071-019-05065-8 doi (DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Chunrui verfasserin aut Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms Ke, Ai aut Zheng, Baodong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 2 vom: 21. Juni, Seite 1451-1476 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 https://doi.org/10.1007/s11071-019-05065-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 2 21 06 1451-1476 |
allfieldsSound |
10.1007/s11071-019-05065-8 doi (DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Zhang, Chunrui verfasserin aut Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms Ke, Ai aut Zheng, Baodong aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 97(2019), 2 vom: 21. Juni, Seite 1451-1476 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 https://doi.org/10.1007/s11071-019-05065-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 97 2019 2 21 06 1451-1476 |
language |
English |
source |
Enthalten in Nonlinear dynamics 97(2019), 2 vom: 21. Juni, Seite 1451-1476 volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 |
sourceStr |
Enthalten in Nonlinear dynamics 97(2019), 2 vom: 21. Juni, Seite 1451-1476 volume:97 year:2019 number:2 day:21 month:06 pages:1451-1476 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Zhang, Chunrui @@aut@@ Ke, Ai @@aut@@ Zheng, Baodong @@aut@@ |
publishDateDaySort_date |
2019-06-21T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051139717 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051139717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232640.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-05065-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051139717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-05065-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Chunrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FitzHugh–Nagumo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turing–Hopf bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turing–Hopf–Turing bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal forms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ke, Ai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Baodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">97(2019), 2 vom: 21. Juni, Seite 1451-1476</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1451-1476</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-05065-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield><subfield code="h">1451-1476</subfield></datafield></record></collection>
|
author |
Zhang, Chunrui |
spellingShingle |
Zhang, Chunrui ddc 510 ssgn 11 misc FitzHugh–Nagumo misc Diffusion misc Coupling misc Turing–Hopf bifurcation misc Turing–Hopf–Turing bifurcation misc Spatial resonance misc Normal forms Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
authorStr |
Zhang, Chunrui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type FitzHugh–Nagumo Diffusion Coupling Turing–Hopf bifurcation Turing–Hopf–Turing bifurcation Spatial resonance Normal forms |
topic |
ddc 510 ssgn 11 misc FitzHugh–Nagumo misc Diffusion misc Coupling misc Turing–Hopf bifurcation misc Turing–Hopf–Turing bifurcation misc Spatial resonance misc Normal forms |
topic_unstemmed |
ddc 510 ssgn 11 misc FitzHugh–Nagumo misc Diffusion misc Coupling misc Turing–Hopf bifurcation misc Turing–Hopf–Turing bifurcation misc Spatial resonance misc Normal forms |
topic_browse |
ddc 510 ssgn 11 misc FitzHugh–Nagumo misc Diffusion misc Coupling misc Turing–Hopf bifurcation misc Turing–Hopf–Turing bifurcation misc Spatial resonance misc Normal forms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
ctrlnum |
(DE-627)OLC2051139717 (DE-He213)s11071-019-05065-8-p |
title_full |
Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
author_sort |
Zhang, Chunrui |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1451 |
author_browse |
Zhang, Chunrui Ke, Ai Zheng, Baodong |
container_volume |
97 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Chunrui |
doi_str_mv |
10.1007/s11071-019-05065-8 |
dewey-full |
510 |
title_sort |
patterns of interaction of coupled reaction–diffusion systems of the fitzhugh–nagumo type |
title_auth |
Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
abstract |
Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. © Springer Nature B.V. 2019 |
abstractGer |
Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. © Springer Nature B.V. 2019 |
abstract_unstemmed |
Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported. © Springer Nature B.V. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type |
url |
https://doi.org/10.1007/s11071-019-05065-8 |
remote_bool |
false |
author2 |
Ke, Ai Zheng, Baodong |
author2Str |
Ke, Ai Zheng, Baodong |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-019-05065-8 |
up_date |
2024-07-04T03:40:25.566Z |
_version_ |
1803618275120119808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051139717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232640.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-05065-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051139717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-05065-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Chunrui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns of interaction of coupled reaction–diffusion systems of the FitzHugh–Nagumo type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Motivated by the dynamics of neuronal responses, we analyze the dynamics of the FitzHugh–Nagumo slow–fast system with diffusion and coupling. In the case of diffusion, the system provides a canonical example of Turing–Hopf bifurcation. By analyzing the linear stability of the local equilibrium, the occurrence of Turing–Hopf bifurcation, Turing–Turing bifurcation and coupled Turing–Hopf bifurcation are obtained. The normal form associated with the Turing–Hopf bifurcation is obtained by using the procedure of Song for calculating the normal form of PDEs. Further, in the case of two coupled FitzHugh–Nagumo reaction–diffusion, the Turing–Hopf–Turing bifurcation occurs, and we also find the case about the spatial resonance of Turing–Turing bifurcation arising, and two kinds spatially steady-state solutions are found which are synchronous or anti-phased. Finally, sample numerical results are reported.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FitzHugh–Nagumo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turing–Hopf bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turing–Hopf–Turing bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal forms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ke, Ai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Baodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">97(2019), 2 vom: 21. Juni, Seite 1451-1476</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:97</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1451-1476</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-05065-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">97</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield><subfield code="h">1451-1476</subfield></datafield></record></collection>
|
score |
7.4015427 |