Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge
Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experime...
Ausführliche Beschreibung
Autor*in: |
Su, Xiaoyang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 98(2019), 2 vom: 25. Sept., Seite 1247-1266 |
---|---|
Übergeordnetes Werk: |
volume:98 ; year:2019 ; number:2 ; day:25 ; month:09 ; pages:1247-1266 |
Links: |
---|
DOI / URN: |
10.1007/s11071-019-05259-0 |
---|
Katalog-ID: |
OLC2051141444 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051141444 | ||
003 | DE-627 | ||
005 | 20230503232704.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-019-05259-0 |2 doi | |
035 | |a (DE-627)OLC2051141444 | ||
035 | |a (DE-He213)s11071-019-05259-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Su, Xiaoyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2019 | ||
520 | |a Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. | ||
650 | 4 | |a Experiments | |
650 | 4 | |a Nonlinearity | |
650 | 4 | |a Parametric vibration | |
650 | 4 | |a Harmonic resonance | |
650 | 4 | |a Multiple internal resonance | |
650 | 4 | |a Primary resonance | |
700 | 1 | |a Kang, Houjun |0 (orcid)0000-0002-2452-9844 |4 aut | |
700 | 1 | |a Chen, Jiefu |4 aut | |
700 | 1 | |a Guo, Tieding |4 aut | |
700 | 1 | |a Sun, Ceshi |4 aut | |
700 | 1 | |a Zhao, Yueyu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 98(2019), 2 vom: 25. Sept., Seite 1247-1266 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:98 |g year:2019 |g number:2 |g day:25 |g month:09 |g pages:1247-1266 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-019-05259-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 98 |j 2019 |e 2 |b 25 |c 09 |h 1247-1266 |
author_variant |
x s xs h k hk j c jc t g tg c s cs y z yz |
---|---|
matchkey_str |
article:0924090X:2019----::xeietltdoipaeolnavbainot |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11071-019-05259-0 doi (DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Su, Xiaoyang verfasserin aut Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance Kang, Houjun (orcid)0000-0002-2452-9844 aut Chen, Jiefu aut Guo, Tieding aut Sun, Ceshi aut Zhao, Yueyu aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 98(2019), 2 vom: 25. Sept., Seite 1247-1266 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 https://doi.org/10.1007/s11071-019-05259-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 98 2019 2 25 09 1247-1266 |
spelling |
10.1007/s11071-019-05259-0 doi (DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Su, Xiaoyang verfasserin aut Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance Kang, Houjun (orcid)0000-0002-2452-9844 aut Chen, Jiefu aut Guo, Tieding aut Sun, Ceshi aut Zhao, Yueyu aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 98(2019), 2 vom: 25. Sept., Seite 1247-1266 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 https://doi.org/10.1007/s11071-019-05259-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 98 2019 2 25 09 1247-1266 |
allfields_unstemmed |
10.1007/s11071-019-05259-0 doi (DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Su, Xiaoyang verfasserin aut Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance Kang, Houjun (orcid)0000-0002-2452-9844 aut Chen, Jiefu aut Guo, Tieding aut Sun, Ceshi aut Zhao, Yueyu aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 98(2019), 2 vom: 25. Sept., Seite 1247-1266 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 https://doi.org/10.1007/s11071-019-05259-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 98 2019 2 25 09 1247-1266 |
allfieldsGer |
10.1007/s11071-019-05259-0 doi (DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Su, Xiaoyang verfasserin aut Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance Kang, Houjun (orcid)0000-0002-2452-9844 aut Chen, Jiefu aut Guo, Tieding aut Sun, Ceshi aut Zhao, Yueyu aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 98(2019), 2 vom: 25. Sept., Seite 1247-1266 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 https://doi.org/10.1007/s11071-019-05259-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 98 2019 2 25 09 1247-1266 |
allfieldsSound |
10.1007/s11071-019-05259-0 doi (DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Su, Xiaoyang verfasserin aut Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2019 Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance Kang, Houjun (orcid)0000-0002-2452-9844 aut Chen, Jiefu aut Guo, Tieding aut Sun, Ceshi aut Zhao, Yueyu aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 98(2019), 2 vom: 25. Sept., Seite 1247-1266 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 https://doi.org/10.1007/s11071-019-05259-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 98 2019 2 25 09 1247-1266 |
language |
English |
source |
Enthalten in Nonlinear dynamics 98(2019), 2 vom: 25. Sept., Seite 1247-1266 volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 |
sourceStr |
Enthalten in Nonlinear dynamics 98(2019), 2 vom: 25. Sept., Seite 1247-1266 volume:98 year:2019 number:2 day:25 month:09 pages:1247-1266 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Su, Xiaoyang @@aut@@ Kang, Houjun @@aut@@ Chen, Jiefu @@aut@@ Guo, Tieding @@aut@@ Sun, Ceshi @@aut@@ Zhao, Yueyu @@aut@@ |
publishDateDaySort_date |
2019-09-25T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2051141444 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051141444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-05259-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051141444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-05259-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Xiaoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary resonance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Houjun</subfield><subfield code="0">(orcid)0000-0002-2452-9844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiefu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Tieding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Ceshi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yueyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">98(2019), 2 vom: 25. Sept., Seite 1247-1266</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1247-1266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-05259-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield><subfield code="h">1247-1266</subfield></datafield></record></collection>
|
author |
Su, Xiaoyang |
spellingShingle |
Su, Xiaoyang ddc 510 ssgn 11 misc Experiments misc Nonlinearity misc Parametric vibration misc Harmonic resonance misc Multiple internal resonance misc Primary resonance Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
authorStr |
Su, Xiaoyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge Experiments Nonlinearity Parametric vibration Harmonic resonance Multiple internal resonance Primary resonance |
topic |
ddc 510 ssgn 11 misc Experiments misc Nonlinearity misc Parametric vibration misc Harmonic resonance misc Multiple internal resonance misc Primary resonance |
topic_unstemmed |
ddc 510 ssgn 11 misc Experiments misc Nonlinearity misc Parametric vibration misc Harmonic resonance misc Multiple internal resonance misc Primary resonance |
topic_browse |
ddc 510 ssgn 11 misc Experiments misc Nonlinearity misc Parametric vibration misc Harmonic resonance misc Multiple internal resonance misc Primary resonance |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
ctrlnum |
(DE-627)OLC2051141444 (DE-He213)s11071-019-05259-0-p |
title_full |
Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
author_sort |
Su, Xiaoyang |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1247 |
author_browse |
Su, Xiaoyang Kang, Houjun Chen, Jiefu Guo, Tieding Sun, Ceshi Zhao, Yueyu |
container_volume |
98 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Su, Xiaoyang |
doi_str_mv |
10.1007/s11071-019-05259-0 |
normlink |
(ORCID)0000-0002-2452-9844 |
normlink_prefix_str_mv |
(orcid)0000-0002-2452-9844 |
dewey-full |
510 |
title_sort |
experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
title_auth |
Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
abstract |
Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. © Springer Nature B.V. 2019 |
abstractGer |
Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. © Springer Nature B.V. 2019 |
abstract_unstemmed |
Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation. © Springer Nature B.V. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge |
url |
https://doi.org/10.1007/s11071-019-05259-0 |
remote_bool |
false |
author2 |
Kang, Houjun Chen, Jiefu Guo, Tieding Sun, Ceshi Zhao, Yueyu |
author2Str |
Kang, Houjun Chen, Jiefu Guo, Tieding Sun, Ceshi Zhao, Yueyu |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-019-05259-0 |
up_date |
2024-07-04T03:40:41.442Z |
_version_ |
1803618291766263808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051141444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232704.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-019-05259-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051141444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-019-05259-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Xiaoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The nonlinear dynamic behaviors of the cable-stayed bridge are considerably complicated and very interesting. In order to explore the nonlinear behaviors of a cable-stayed bridge, a scaled physical model with Xiangshangang Bridge as the prototype is established and the systematical experiments are carried out. Firstly, the physical parameters, especially initial tension forces, of cables are measured by free vibration test and the data is dealt with FFT and filtering technology. The corresponding modal analysis is conducted and the test results are in good agreement with those obtained by OECS model and MECS model, which shows the experimental effectivity. Then, the free vibrations of cables are analyzed and the 1:1 resonance between different cables is revealed. Thereafter, by applying a single excitation to the beam, the nonlinear resonance of the cable-stayed bridge is studied and the rich nonlinear phenomena are observed, such as the parametric vibration, harmonic resonance, multiple internal resonance, primary resonance and cable–cable coupling vibration. Finally, some interesting conclusions are drawn, for example, the large amplitude vibrations of cables can be induced when the nonlinear resonance conditions are matched under external excitation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary resonance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Houjun</subfield><subfield code="0">(orcid)0000-0002-2452-9844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jiefu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Tieding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Ceshi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yueyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">98(2019), 2 vom: 25. Sept., Seite 1247-1266</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1247-1266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-019-05259-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield><subfield code="h">1247-1266</subfield></datafield></record></collection>
|
score |
7.398796 |