Complementary Lidstone interpolation on scattered data sets
Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on...
Ausführliche Beschreibung
Autor*in: |
Costabile, F. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical algorithms - Springer US, 1991, 64(2012), 1 vom: 08. Dez., Seite 157-180 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2012 ; number:1 ; day:08 ; month:12 ; pages:157-180 |
Links: |
---|
DOI / URN: |
10.1007/s11075-012-9659-6 |
---|
Katalog-ID: |
OLC2051162107 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051162107 | ||
003 | DE-627 | ||
005 | 20230503232936.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11075-012-9659-6 |2 doi | |
035 | |a (DE-627)OLC2051162107 | ||
035 | |a (DE-He213)s11075-012-9659-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Costabile, F. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complementary Lidstone interpolation on scattered data sets |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2012 | ||
520 | |a Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. | ||
650 | 4 | |a Combined Shepard operators | |
650 | 4 | |a Complementary Lidstone interpolation | |
650 | 4 | |a Functional approximation | |
650 | 4 | |a Error analysis | |
700 | 1 | |a Dell’Accio, F. |4 aut | |
700 | 1 | |a Di Tommaso, F. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Numerical algorithms |d Springer US, 1991 |g 64(2012), 1 vom: 08. Dez., Seite 157-180 |w (DE-627)130981753 |w (DE-600)1075844-6 |w (DE-576)029154111 |x 1017-1398 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2012 |g number:1 |g day:08 |g month:12 |g pages:157-180 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11075-012-9659-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 64 |j 2012 |e 1 |b 08 |c 12 |h 157-180 |
author_variant |
f a c fa fac f d fd t f d tf tfd |
---|---|
matchkey_str |
article:10171398:2012----::opeetrldtnitroainnc |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s11075-012-9659-6 doi (DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Costabile, F. A. verfasserin aut Complementary Lidstone interpolation on scattered data sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis Dell’Accio, F. aut Di Tommaso, F. aut Enthalten in Numerical algorithms Springer US, 1991 64(2012), 1 vom: 08. Dez., Seite 157-180 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:64 year:2012 number:1 day:08 month:12 pages:157-180 https://doi.org/10.1007/s11075-012-9659-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 AR 64 2012 1 08 12 157-180 |
spelling |
10.1007/s11075-012-9659-6 doi (DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Costabile, F. A. verfasserin aut Complementary Lidstone interpolation on scattered data sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis Dell’Accio, F. aut Di Tommaso, F. aut Enthalten in Numerical algorithms Springer US, 1991 64(2012), 1 vom: 08. Dez., Seite 157-180 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:64 year:2012 number:1 day:08 month:12 pages:157-180 https://doi.org/10.1007/s11075-012-9659-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 AR 64 2012 1 08 12 157-180 |
allfields_unstemmed |
10.1007/s11075-012-9659-6 doi (DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Costabile, F. A. verfasserin aut Complementary Lidstone interpolation on scattered data sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis Dell’Accio, F. aut Di Tommaso, F. aut Enthalten in Numerical algorithms Springer US, 1991 64(2012), 1 vom: 08. Dez., Seite 157-180 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:64 year:2012 number:1 day:08 month:12 pages:157-180 https://doi.org/10.1007/s11075-012-9659-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 AR 64 2012 1 08 12 157-180 |
allfieldsGer |
10.1007/s11075-012-9659-6 doi (DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Costabile, F. A. verfasserin aut Complementary Lidstone interpolation on scattered data sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis Dell’Accio, F. aut Di Tommaso, F. aut Enthalten in Numerical algorithms Springer US, 1991 64(2012), 1 vom: 08. Dez., Seite 157-180 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:64 year:2012 number:1 day:08 month:12 pages:157-180 https://doi.org/10.1007/s11075-012-9659-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 AR 64 2012 1 08 12 157-180 |
allfieldsSound |
10.1007/s11075-012-9659-6 doi (DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Costabile, F. A. verfasserin aut Complementary Lidstone interpolation on scattered data sets 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2012 Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis Dell’Accio, F. aut Di Tommaso, F. aut Enthalten in Numerical algorithms Springer US, 1991 64(2012), 1 vom: 08. Dez., Seite 157-180 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:64 year:2012 number:1 day:08 month:12 pages:157-180 https://doi.org/10.1007/s11075-012-9659-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 AR 64 2012 1 08 12 157-180 |
language |
English |
source |
Enthalten in Numerical algorithms 64(2012), 1 vom: 08. Dez., Seite 157-180 volume:64 year:2012 number:1 day:08 month:12 pages:157-180 |
sourceStr |
Enthalten in Numerical algorithms 64(2012), 1 vom: 08. Dez., Seite 157-180 volume:64 year:2012 number:1 day:08 month:12 pages:157-180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Numerical algorithms |
authorswithroles_txt_mv |
Costabile, F. A. @@aut@@ Dell’Accio, F. @@aut@@ Di Tommaso, F. @@aut@@ |
publishDateDaySort_date |
2012-12-08T00:00:00Z |
hierarchy_top_id |
130981753 |
dewey-sort |
3510 |
id |
OLC2051162107 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051162107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232936.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11075-012-9659-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051162107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11075-012-9659-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costabile, F. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementary Lidstone interpolation on scattered data sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined Shepard operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complementary Lidstone interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dell’Accio, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Tommaso, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical algorithms</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">64(2012), 1 vom: 08. Dez., Seite 157-180</subfield><subfield code="w">(DE-627)130981753</subfield><subfield code="w">(DE-600)1075844-6</subfield><subfield code="w">(DE-576)029154111</subfield><subfield code="x">1017-1398</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:157-180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11075-012-9659-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">12</subfield><subfield code="h">157-180</subfield></datafield></record></collection>
|
author |
Costabile, F. A. |
spellingShingle |
Costabile, F. A. ddc 510 ssgn 17,1 misc Combined Shepard operators misc Complementary Lidstone interpolation misc Functional approximation misc Error analysis Complementary Lidstone interpolation on scattered data sets |
authorStr |
Costabile, F. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130981753 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1017-1398 |
topic_title |
510 VZ 17,1 ssgn Complementary Lidstone interpolation on scattered data sets Combined Shepard operators Complementary Lidstone interpolation Functional approximation Error analysis |
topic |
ddc 510 ssgn 17,1 misc Combined Shepard operators misc Complementary Lidstone interpolation misc Functional approximation misc Error analysis |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Combined Shepard operators misc Complementary Lidstone interpolation misc Functional approximation misc Error analysis |
topic_browse |
ddc 510 ssgn 17,1 misc Combined Shepard operators misc Complementary Lidstone interpolation misc Functional approximation misc Error analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Numerical algorithms |
hierarchy_parent_id |
130981753 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Numerical algorithms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 |
title |
Complementary Lidstone interpolation on scattered data sets |
ctrlnum |
(DE-627)OLC2051162107 (DE-He213)s11075-012-9659-6-p |
title_full |
Complementary Lidstone interpolation on scattered data sets |
author_sort |
Costabile, F. A. |
journal |
Numerical algorithms |
journalStr |
Numerical algorithms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
157 |
author_browse |
Costabile, F. A. Dell’Accio, F. Di Tommaso, F. |
container_volume |
64 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Costabile, F. A. |
doi_str_mv |
10.1007/s11075-012-9659-6 |
dewey-full |
510 |
title_sort |
complementary lidstone interpolation on scattered data sets |
title_auth |
Complementary Lidstone interpolation on scattered data sets |
abstract |
Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. © Springer Science+Business Media New York 2012 |
abstractGer |
Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. © Springer Science+Business Media New York 2012 |
abstract_unstemmed |
Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided. © Springer Science+Business Media New York 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2088 |
container_issue |
1 |
title_short |
Complementary Lidstone interpolation on scattered data sets |
url |
https://doi.org/10.1007/s11075-012-9659-6 |
remote_bool |
false |
author2 |
Dell’Accio, F. Di Tommaso, F. |
author2Str |
Dell’Accio, F. Di Tommaso, F. |
ppnlink |
130981753 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11075-012-9659-6 |
up_date |
2024-07-04T03:43:13.859Z |
_version_ |
1803618451587072000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051162107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503232936.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11075-012-9659-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051162107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11075-012-9659-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costabile, F. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementary Lidstone interpolation on scattered data sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently we have introduced a new technique for combining classical bivariate Shepard operators with three point polynomial interpolation operators (Dell’Accio and Di Tommaso, On the extension of the Shepard-Bernoulli operators to higher dimensions, unpublished). This technique is based on the association, to each sample point, of a triangle with a vertex in it and other ones in its neighborhood to minimize the error of the three point interpolation polynomial. The combination inherits both degree of exactness and interpolation conditions of the interpolation polynomial at each sample point, so that in Caira et al. (J Comput Appl Math 236:1691–1707, 2012) we generalized the notion of Lidstone Interpolation (LI) to scattered data sets by combining Shepard operators with the three point Lidstone interpolation polynomial (Costabile and Dell’Accio, Appl Numer Math 52:339–361, 2005). Complementary Lidstone Interpolation (CLI), which naturally complements Lidstone interpolation, was recently introduced by Costabile et al. (J Comput Appl Math 176:77–90, 2005) and drawn on by Agarwal et al. (2009) and Agarwal and Wong (J Comput Appl Math 234:2543–2561, 2010). In this paper we generalize the notion of CLI to bivariate scattered data sets. Numerical results are provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combined Shepard operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complementary Lidstone interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dell’Accio, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Tommaso, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical algorithms</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">64(2012), 1 vom: 08. Dez., Seite 157-180</subfield><subfield code="w">(DE-627)130981753</subfield><subfield code="w">(DE-600)1075844-6</subfield><subfield code="w">(DE-576)029154111</subfield><subfield code="x">1017-1398</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:157-180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11075-012-9659-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">12</subfield><subfield code="h">157-180</subfield></datafield></record></collection>
|
score |
7.400916 |