Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory
Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field...
Ausführliche Beschreibung
Autor*in: |
Effenberger, Felix [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Computing and visualization in science - Springer-Verlag, 1997, 13(2010), 8 vom: Dez., Seite 377-396 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2010 ; number:8 ; month:12 ; pages:377-396 |
Links: |
---|
DOI / URN: |
10.1007/s00791-011-0152-x |
---|
Katalog-ID: |
OLC2051430179 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051430179 | ||
003 | DE-627 | ||
005 | 20230502152846.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00791-011-0152-x |2 doi | |
035 | |a (DE-627)OLC2051430179 | ||
035 | |a (DE-He213)s00791-011-0152-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Effenberger, Felix |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2011 | ||
520 | |a Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. | ||
650 | 4 | |a Vector field topology | |
650 | 4 | |a Interpolation | |
650 | 4 | |a Barycentric interpolation | |
650 | 4 | |a Linear interpolation | |
650 | 4 | |a Bilinear interpolation | |
650 | 4 | |a Level sets | |
650 | 4 | |a Higher-order singularities | |
650 | 4 | |a Computational group theory | |
650 | 4 | |a Colorings | |
700 | 1 | |a Weiskopf, Daniel |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computing and visualization in science |d Springer-Verlag, 1997 |g 13(2010), 8 vom: Dez., Seite 377-396 |w (DE-627)232187533 |w (DE-600)1391037-1 |w (DE-576)060776471 |x 1432-9360 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2010 |g number:8 |g month:12 |g pages:377-396 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00791-011-0152-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 13 |j 2010 |e 8 |c 12 |h 377-396 |
author_variant |
f e fe d w dw |
---|---|
matchkey_str |
article:14329360:2010----::idnadlsiynciiapito2vcofedaelretdp |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00791-011-0152-x doi (DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p DE-627 ger DE-627 rakwb eng 500 VZ 004 VZ 11 ssgn Effenberger, Felix verfasserin aut Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings Weiskopf, Daniel aut Enthalten in Computing and visualization in science Springer-Verlag, 1997 13(2010), 8 vom: Dez., Seite 377-396 (DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 1432-9360 nnns volume:13 year:2010 number:8 month:12 pages:377-396 https://doi.org/10.1007/s00791-011-0152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 13 2010 8 12 377-396 |
spelling |
10.1007/s00791-011-0152-x doi (DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p DE-627 ger DE-627 rakwb eng 500 VZ 004 VZ 11 ssgn Effenberger, Felix verfasserin aut Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings Weiskopf, Daniel aut Enthalten in Computing and visualization in science Springer-Verlag, 1997 13(2010), 8 vom: Dez., Seite 377-396 (DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 1432-9360 nnns volume:13 year:2010 number:8 month:12 pages:377-396 https://doi.org/10.1007/s00791-011-0152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 13 2010 8 12 377-396 |
allfields_unstemmed |
10.1007/s00791-011-0152-x doi (DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p DE-627 ger DE-627 rakwb eng 500 VZ 004 VZ 11 ssgn Effenberger, Felix verfasserin aut Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings Weiskopf, Daniel aut Enthalten in Computing and visualization in science Springer-Verlag, 1997 13(2010), 8 vom: Dez., Seite 377-396 (DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 1432-9360 nnns volume:13 year:2010 number:8 month:12 pages:377-396 https://doi.org/10.1007/s00791-011-0152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 13 2010 8 12 377-396 |
allfieldsGer |
10.1007/s00791-011-0152-x doi (DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p DE-627 ger DE-627 rakwb eng 500 VZ 004 VZ 11 ssgn Effenberger, Felix verfasserin aut Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings Weiskopf, Daniel aut Enthalten in Computing and visualization in science Springer-Verlag, 1997 13(2010), 8 vom: Dez., Seite 377-396 (DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 1432-9360 nnns volume:13 year:2010 number:8 month:12 pages:377-396 https://doi.org/10.1007/s00791-011-0152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 13 2010 8 12 377-396 |
allfieldsSound |
10.1007/s00791-011-0152-x doi (DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p DE-627 ger DE-627 rakwb eng 500 VZ 004 VZ 11 ssgn Effenberger, Felix verfasserin aut Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings Weiskopf, Daniel aut Enthalten in Computing and visualization in science Springer-Verlag, 1997 13(2010), 8 vom: Dez., Seite 377-396 (DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 1432-9360 nnns volume:13 year:2010 number:8 month:12 pages:377-396 https://doi.org/10.1007/s00791-011-0152-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 AR 13 2010 8 12 377-396 |
language |
English |
source |
Enthalten in Computing and visualization in science 13(2010), 8 vom: Dez., Seite 377-396 volume:13 year:2010 number:8 month:12 pages:377-396 |
sourceStr |
Enthalten in Computing and visualization in science 13(2010), 8 vom: Dez., Seite 377-396 volume:13 year:2010 number:8 month:12 pages:377-396 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Computing and visualization in science |
authorswithroles_txt_mv |
Effenberger, Felix @@aut@@ Weiskopf, Daniel @@aut@@ |
publishDateDaySort_date |
2010-12-01T00:00:00Z |
hierarchy_top_id |
232187533 |
dewey-sort |
3500 |
id |
OLC2051430179 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051430179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502152846.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00791-011-0152-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051430179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00791-011-0152-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Effenberger, Felix</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector field topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barycentric interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bilinear interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higher-order singularities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiskopf, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computing and visualization in science</subfield><subfield code="d">Springer-Verlag, 1997</subfield><subfield code="g">13(2010), 8 vom: Dez., Seite 377-396</subfield><subfield code="w">(DE-627)232187533</subfield><subfield code="w">(DE-600)1391037-1</subfield><subfield code="w">(DE-576)060776471</subfield><subfield code="x">1432-9360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:8</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:377-396</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00791-011-0152-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2010</subfield><subfield code="e">8</subfield><subfield code="c">12</subfield><subfield code="h">377-396</subfield></datafield></record></collection>
|
author |
Effenberger, Felix |
spellingShingle |
Effenberger, Felix ddc 500 ddc 004 ssgn 11 misc Vector field topology misc Interpolation misc Barycentric interpolation misc Linear interpolation misc Bilinear interpolation misc Level sets misc Higher-order singularities misc Computational group theory misc Colorings Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
authorStr |
Effenberger, Felix |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)232187533 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-9360 |
topic_title |
500 VZ 004 VZ 11 ssgn Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory Vector field topology Interpolation Barycentric interpolation Linear interpolation Bilinear interpolation Level sets Higher-order singularities Computational group theory Colorings |
topic |
ddc 500 ddc 004 ssgn 11 misc Vector field topology misc Interpolation misc Barycentric interpolation misc Linear interpolation misc Bilinear interpolation misc Level sets misc Higher-order singularities misc Computational group theory misc Colorings |
topic_unstemmed |
ddc 500 ddc 004 ssgn 11 misc Vector field topology misc Interpolation misc Barycentric interpolation misc Linear interpolation misc Bilinear interpolation misc Level sets misc Higher-order singularities misc Computational group theory misc Colorings |
topic_browse |
ddc 500 ddc 004 ssgn 11 misc Vector field topology misc Interpolation misc Barycentric interpolation misc Linear interpolation misc Bilinear interpolation misc Level sets misc Higher-order singularities misc Computational group theory misc Colorings |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computing and visualization in science |
hierarchy_parent_id |
232187533 |
dewey-tens |
500 - Science 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computing and visualization in science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)232187533 (DE-600)1391037-1 (DE-576)060776471 |
title |
Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
ctrlnum |
(DE-627)OLC2051430179 (DE-He213)s00791-011-0152-x-p |
title_full |
Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
author_sort |
Effenberger, Felix |
journal |
Computing and visualization in science |
journalStr |
Computing and visualization in science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
377 |
author_browse |
Effenberger, Felix Weiskopf, Daniel |
container_volume |
13 |
class |
500 VZ 004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Effenberger, Felix |
doi_str_mv |
10.1007/s00791-011-0152-x |
dewey-full |
500 004 |
title_sort |
finding and classifying critical points of 2d vector fields: a cell-oriented approach using group theory |
title_auth |
Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
abstract |
Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. © Springer-Verlag 2011 |
abstractGer |
Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. © Springer-Verlag 2011 |
abstract_unstemmed |
Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed. © Springer-Verlag 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4277 |
container_issue |
8 |
title_short |
Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory |
url |
https://doi.org/10.1007/s00791-011-0152-x |
remote_bool |
false |
author2 |
Weiskopf, Daniel |
author2Str |
Weiskopf, Daniel |
ppnlink |
232187533 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00791-011-0152-x |
up_date |
2024-07-04T04:24:55.540Z |
_version_ |
1803621074771902464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051430179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502152846.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00791-011-0152-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051430179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00791-011-0152-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Effenberger, Felix</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a novel approach to finding critical points in cell-wise barycentrically or bilinearly interpolated vector fields on surfaces. The Poincaré index of the critical points is determined by investigating the qualitative behavior of 0-level sets of the interpolants of the vector field components in parameter space using precomputed combinatorial results, thus avoiding the computation of the Jacobian of the vector field at the critical points in order to determine its index. The locations of the critical points within a cell are determined analytically to achieve accurate results. This approach leads to a correct treatment of cases with two first-order critical points or one second-order critical point of bilinearly interpolated vector fields within one cell, which would be missed by examining the linearized field only. We show that for the considered interpolation schemes determining the index of a critical point can be seen as a coloring problem of cell edges. A complete classification of all possible colorings in terms of the types and number of critical points yielded by each coloring is given using computational group theory. We present an efficient algorithm that makes use of these precomputed classifications in order to find and classify critical points in a cell-by-cell fashion. Issues of numerical stability, construction of the topological skeleton, topological simplification, and the statistics of the different types of critical points are also discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector field topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barycentric interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bilinear interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higher-order singularities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorings</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiskopf, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computing and visualization in science</subfield><subfield code="d">Springer-Verlag, 1997</subfield><subfield code="g">13(2010), 8 vom: Dez., Seite 377-396</subfield><subfield code="w">(DE-627)232187533</subfield><subfield code="w">(DE-600)1391037-1</subfield><subfield code="w">(DE-576)060776471</subfield><subfield code="x">1432-9360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:8</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:377-396</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00791-011-0152-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2010</subfield><subfield code="e">8</subfield><subfield code="c">12</subfield><subfield code="h">377-396</subfield></datafield></record></collection>
|
score |
7.400401 |