Characterization of 3D4(q)
Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]...
Ausführliche Beschreibung
Autor*in: |
Chen, Guiyun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Hong Kong 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Southeast Asian bulletin of mathematics - Springer-Verlag, 1977, 25(2002), 3 vom: Feb., Seite 389-401 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2002 ; number:3 ; month:02 ; pages:389-401 |
Links: |
---|
DOI / URN: |
10.1007/s10012-001-0389-2 |
---|
Katalog-ID: |
OLC2051517371 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051517371 | ||
003 | DE-627 | ||
005 | 20230502155124.0 | ||
007 | tu | ||
008 | 200819s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10012-001-0389-2 |2 doi | |
035 | |a (DE-627)OLC2051517371 | ||
035 | |a (DE-He213)s10012-001-0389-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Chen, Guiyun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of 3D4(q) |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Hong Kong 2001 | ||
520 | |a Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). | ||
650 | 4 | |a Finite Group | |
650 | 4 | |a Simple Group | |
650 | 4 | |a Prime Graph | |
650 | 4 | |a Finite Simple Group | |
650 | 4 | |a Order Component | |
773 | 0 | 8 | |i Enthalten in |t Southeast Asian bulletin of mathematics |d Springer-Verlag, 1977 |g 25(2002), 3 vom: Feb., Seite 389-401 |w (DE-627)130026042 |w (DE-600)424019-4 |w (DE-576)034180419 |x 0129-2021 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2002 |g number:3 |g month:02 |g pages:389-401 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10012-001-0389-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 25 |j 2002 |e 3 |c 02 |h 389-401 |
author_variant |
g c gc |
---|---|
matchkey_str |
article:01292021:2002----::hrceiai |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1007/s10012-001-0389-2 doi (DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Guiyun verfasserin aut Characterization of 3D4(q) 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Hong Kong 2001 Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). Finite Group Simple Group Prime Graph Finite Simple Group Order Component Enthalten in Southeast Asian bulletin of mathematics Springer-Verlag, 1977 25(2002), 3 vom: Feb., Seite 389-401 (DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 0129-2021 nnns volume:25 year:2002 number:3 month:02 pages:389-401 https://doi.org/10.1007/s10012-001-0389-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 AR 25 2002 3 02 389-401 |
spelling |
10.1007/s10012-001-0389-2 doi (DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Guiyun verfasserin aut Characterization of 3D4(q) 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Hong Kong 2001 Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). Finite Group Simple Group Prime Graph Finite Simple Group Order Component Enthalten in Southeast Asian bulletin of mathematics Springer-Verlag, 1977 25(2002), 3 vom: Feb., Seite 389-401 (DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 0129-2021 nnns volume:25 year:2002 number:3 month:02 pages:389-401 https://doi.org/10.1007/s10012-001-0389-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 AR 25 2002 3 02 389-401 |
allfields_unstemmed |
10.1007/s10012-001-0389-2 doi (DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Guiyun verfasserin aut Characterization of 3D4(q) 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Hong Kong 2001 Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). Finite Group Simple Group Prime Graph Finite Simple Group Order Component Enthalten in Southeast Asian bulletin of mathematics Springer-Verlag, 1977 25(2002), 3 vom: Feb., Seite 389-401 (DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 0129-2021 nnns volume:25 year:2002 number:3 month:02 pages:389-401 https://doi.org/10.1007/s10012-001-0389-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 AR 25 2002 3 02 389-401 |
allfieldsGer |
10.1007/s10012-001-0389-2 doi (DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Guiyun verfasserin aut Characterization of 3D4(q) 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Hong Kong 2001 Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). Finite Group Simple Group Prime Graph Finite Simple Group Order Component Enthalten in Southeast Asian bulletin of mathematics Springer-Verlag, 1977 25(2002), 3 vom: Feb., Seite 389-401 (DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 0129-2021 nnns volume:25 year:2002 number:3 month:02 pages:389-401 https://doi.org/10.1007/s10012-001-0389-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 AR 25 2002 3 02 389-401 |
allfieldsSound |
10.1007/s10012-001-0389-2 doi (DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Chen, Guiyun verfasserin aut Characterization of 3D4(q) 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Hong Kong 2001 Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). Finite Group Simple Group Prime Graph Finite Simple Group Order Component Enthalten in Southeast Asian bulletin of mathematics Springer-Verlag, 1977 25(2002), 3 vom: Feb., Seite 389-401 (DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 0129-2021 nnns volume:25 year:2002 number:3 month:02 pages:389-401 https://doi.org/10.1007/s10012-001-0389-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 AR 25 2002 3 02 389-401 |
language |
English |
source |
Enthalten in Southeast Asian bulletin of mathematics 25(2002), 3 vom: Feb., Seite 389-401 volume:25 year:2002 number:3 month:02 pages:389-401 |
sourceStr |
Enthalten in Southeast Asian bulletin of mathematics 25(2002), 3 vom: Feb., Seite 389-401 volume:25 year:2002 number:3 month:02 pages:389-401 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Finite Group Simple Group Prime Graph Finite Simple Group Order Component |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Southeast Asian bulletin of mathematics |
authorswithroles_txt_mv |
Chen, Guiyun @@aut@@ |
publishDateDaySort_date |
2002-02-01T00:00:00Z |
hierarchy_top_id |
130026042 |
dewey-sort |
3510 |
id |
OLC2051517371 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051517371</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502155124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10012-001-0389-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051517371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10012-001-0389-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Guiyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of 3D4(q)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Hong Kong 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prime Graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Simple Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order Component</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Southeast Asian bulletin of mathematics</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">25(2002), 3 vom: Feb., Seite 389-401</subfield><subfield code="w">(DE-627)130026042</subfield><subfield code="w">(DE-600)424019-4</subfield><subfield code="w">(DE-576)034180419</subfield><subfield code="x">0129-2021</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:389-401</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10012-001-0389-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">389-401</subfield></datafield></record></collection>
|
author |
Chen, Guiyun |
spellingShingle |
Chen, Guiyun ddc 510 ssgn 17,1 misc Finite Group misc Simple Group misc Prime Graph misc Finite Simple Group misc Order Component Characterization of 3D4(q) |
authorStr |
Chen, Guiyun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130026042 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0129-2021 |
topic_title |
510 VZ 17,1 ssgn Characterization of 3D4(q) Finite Group Simple Group Prime Graph Finite Simple Group Order Component |
topic |
ddc 510 ssgn 17,1 misc Finite Group misc Simple Group misc Prime Graph misc Finite Simple Group misc Order Component |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Finite Group misc Simple Group misc Prime Graph misc Finite Simple Group misc Order Component |
topic_browse |
ddc 510 ssgn 17,1 misc Finite Group misc Simple Group misc Prime Graph misc Finite Simple Group misc Order Component |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Southeast Asian bulletin of mathematics |
hierarchy_parent_id |
130026042 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Southeast Asian bulletin of mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130026042 (DE-600)424019-4 (DE-576)034180419 |
title |
Characterization of 3D4(q) |
ctrlnum |
(DE-627)OLC2051517371 (DE-He213)s10012-001-0389-2-p |
title_full |
Characterization of 3D4(q) |
author_sort |
Chen, Guiyun |
journal |
Southeast Asian bulletin of mathematics |
journalStr |
Southeast Asian bulletin of mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
389 |
author_browse |
Chen, Guiyun |
container_volume |
25 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Chen, Guiyun |
doi_str_mv |
10.1007/s10012-001-0389-2 |
dewey-full |
510 |
title_sort |
characterization of 3d4(q) |
title_auth |
Characterization of 3D4(q) |
abstract |
Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). © Springer-Verlag Hong Kong 2001 |
abstractGer |
Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). © Springer-Verlag Hong Kong 2001 |
abstract_unstemmed |
Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]). © Springer-Verlag Hong Kong 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Characterization of 3D4(q) |
url |
https://doi.org/10.1007/s10012-001-0389-2 |
remote_bool |
false |
ppnlink |
130026042 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10012-001-0389-2 |
up_date |
2024-07-04T04:38:02.107Z |
_version_ |
1803621899551375360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051517371</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502155124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10012-001-0389-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051517371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10012-001-0389-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Guiyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of 3D4(q)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Hong Kong 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The author defined the concept “order components” in [2] and gave a new characterization of sporadic simple groups by their order components in [7]. Afterwards the following groups were characterized by the author: G2(q), q = 0 (mod 3)[8]; E8(q)[9]; Suzuki-Ree $ groups^{[10]} $; PSL2(q)[11]. Here the author will continue such kind of characterization and prove that: Theorem 1.Let G be a finite group, M =3D4(q). If G and M has the same order components, then G ≅ M. And the following theorems follows from Theorem 1. Theorem 2. (Thompson’s Conjecture) Let G be a finite group, Z(G) = 1,M = 3D4(q). If N(G) = N(M), then G ≅ M. (ref. [6]) Theorem 3. (Wujie Shi) Let G be a finite group, M = 3D4(q). If|G| = |M|, $ π_{e} $(G) = $ π_{e} $(M), then G ≅ M. (ref. [15]) All notations are the same as in [2]. According to the classification theorem of finite simple groups, [12] and [13], we can list the order components of finite simple groups with nonconnected prime graphs in Tables 1-4 (ref. [5]).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prime Graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Simple Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order Component</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Southeast Asian bulletin of mathematics</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">25(2002), 3 vom: Feb., Seite 389-401</subfield><subfield code="w">(DE-627)130026042</subfield><subfield code="w">(DE-600)424019-4</subfield><subfield code="w">(DE-576)034180419</subfield><subfield code="x">0129-2021</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:389-401</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10012-001-0389-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2002</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">389-401</subfield></datafield></record></collection>
|
score |
7.400923 |