Constructing $$L_{1}$$-graphs for subspace learning via recurrent neural networks

Abstract In this paper, the problem that we are interested is constructing $$l_{1}$$-graphs for subspace learning via recurrent neural networks. We propose a closed affine subspace learning (CASL) method to do so. The problem of CASL is formulated as an optimization problem described by an energy fu...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Kuang, Yin [verfasserIn]

Zhang, Lei

Yi, Zhang

Format:

Artikel

Sprache:

Englisch

Erschienen:

2014

Schlagwörter:

Closed affine subspace learning (CASL)

Non-negative matrix factorization (NMF)

Sparse representation

Multiple manifolds clustering and embedding

Lotka–Volterra recurrent neural networks (LV RNNs)

Anmerkung:

© Springer-Verlag London 2014

Übergeordnetes Werk:

Enthalten in: Pattern analysis and applications - Springer London, 1998, 18(2014), 4 vom: 09. Mai, Seite 817-828

Übergeordnetes Werk:

volume:18 ; year:2014 ; number:4 ; day:09 ; month:05 ; pages:817-828

Links:

Volltext

DOI / URN:

10.1007/s10044-014-0370-1

Katalog-ID:

OLC2051700257

Nicht das Richtige dabei?

Schreiben Sie uns!