A hyper-heuristic approach to aircraft structural design optimization
Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength u...
Ausführliche Beschreibung
Autor*in: |
Allen, Jonathan G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Structural and multidisciplinary optimization - Springer Berlin Heidelberg, 2000, 48(2013), 4 vom: 21. Apr., Seite 807-819 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2013 ; number:4 ; day:21 ; month:04 ; pages:807-819 |
Links: |
---|
DOI / URN: |
10.1007/s00158-013-0928-3 |
---|
Katalog-ID: |
OLC2051776970 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051776970 | ||
003 | DE-627 | ||
005 | 20230401065022.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00158-013-0928-3 |2 doi | |
035 | |a (DE-627)OLC2051776970 | ||
035 | |a (DE-He213)s00158-013-0928-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
084 | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |2 bkl | ||
100 | 1 | |a Allen, Jonathan G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A hyper-heuristic approach to aircraft structural design optimization |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2013 | ||
520 | |a Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. | ||
650 | 4 | |a Aircraft conceptual design | |
650 | 4 | |a Structural optimization | |
650 | 4 | |a Hyper-heuristic optimization | |
700 | 1 | |a Coates, Graham |4 aut | |
700 | 1 | |a Trevelyan, Jon |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Structural and multidisciplinary optimization |d Springer Berlin Heidelberg, 2000 |g 48(2013), 4 vom: 21. Apr., Seite 807-819 |w (DE-627)312415958 |w (DE-600)2009366-4 |w (DE-576)090895207 |x 1615-147X |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2013 |g number:4 |g day:21 |g month:04 |g pages:807-819 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00158-013-0928-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |q VZ |0 181571455 |0 (DE-625)181571455 |
951 | |a AR | ||
952 | |d 48 |j 2013 |e 4 |b 21 |c 04 |h 807-819 |
author_variant |
j g a jg jga g c gc j t jt |
---|---|
matchkey_str |
article:1615147X:2013----::hprersiapoctarrfsrcuad |
hierarchy_sort_str |
2013 |
bklnumber |
50.03$jMethoden und Techniken der Ingenieurwissenschaften |
publishDate |
2013 |
allfields |
10.1007/s00158-013-0928-3 doi (DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Allen, Jonathan G. verfasserin aut A hyper-heuristic approach to aircraft structural design optimization 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. Aircraft conceptual design Structural optimization Hyper-heuristic optimization Coates, Graham aut Trevelyan, Jon aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 48(2013), 4 vom: 21. Apr., Seite 807-819 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:48 year:2013 number:4 day:21 month:04 pages:807-819 https://doi.org/10.1007/s00158-013-0928-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 48 2013 4 21 04 807-819 |
spelling |
10.1007/s00158-013-0928-3 doi (DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Allen, Jonathan G. verfasserin aut A hyper-heuristic approach to aircraft structural design optimization 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. Aircraft conceptual design Structural optimization Hyper-heuristic optimization Coates, Graham aut Trevelyan, Jon aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 48(2013), 4 vom: 21. Apr., Seite 807-819 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:48 year:2013 number:4 day:21 month:04 pages:807-819 https://doi.org/10.1007/s00158-013-0928-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 48 2013 4 21 04 807-819 |
allfields_unstemmed |
10.1007/s00158-013-0928-3 doi (DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Allen, Jonathan G. verfasserin aut A hyper-heuristic approach to aircraft structural design optimization 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. Aircraft conceptual design Structural optimization Hyper-heuristic optimization Coates, Graham aut Trevelyan, Jon aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 48(2013), 4 vom: 21. Apr., Seite 807-819 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:48 year:2013 number:4 day:21 month:04 pages:807-819 https://doi.org/10.1007/s00158-013-0928-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 48 2013 4 21 04 807-819 |
allfieldsGer |
10.1007/s00158-013-0928-3 doi (DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Allen, Jonathan G. verfasserin aut A hyper-heuristic approach to aircraft structural design optimization 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. Aircraft conceptual design Structural optimization Hyper-heuristic optimization Coates, Graham aut Trevelyan, Jon aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 48(2013), 4 vom: 21. Apr., Seite 807-819 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:48 year:2013 number:4 day:21 month:04 pages:807-819 https://doi.org/10.1007/s00158-013-0928-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 48 2013 4 21 04 807-819 |
allfieldsSound |
10.1007/s00158-013-0928-3 doi (DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Allen, Jonathan G. verfasserin aut A hyper-heuristic approach to aircraft structural design optimization 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2013 Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. Aircraft conceptual design Structural optimization Hyper-heuristic optimization Coates, Graham aut Trevelyan, Jon aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 48(2013), 4 vom: 21. Apr., Seite 807-819 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:48 year:2013 number:4 day:21 month:04 pages:807-819 https://doi.org/10.1007/s00158-013-0928-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 48 2013 4 21 04 807-819 |
language |
English |
source |
Enthalten in Structural and multidisciplinary optimization 48(2013), 4 vom: 21. Apr., Seite 807-819 volume:48 year:2013 number:4 day:21 month:04 pages:807-819 |
sourceStr |
Enthalten in Structural and multidisciplinary optimization 48(2013), 4 vom: 21. Apr., Seite 807-819 volume:48 year:2013 number:4 day:21 month:04 pages:807-819 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aircraft conceptual design Structural optimization Hyper-heuristic optimization |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Structural and multidisciplinary optimization |
authorswithroles_txt_mv |
Allen, Jonathan G. @@aut@@ Coates, Graham @@aut@@ Trevelyan, Jon @@aut@@ |
publishDateDaySort_date |
2013-04-21T00:00:00Z |
hierarchy_top_id |
312415958 |
dewey-sort |
3510 |
id |
OLC2051776970 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051776970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-013-0928-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051776970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-013-0928-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Allen, Jonathan G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hyper-heuristic approach to aircraft structural design optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft conceptual design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyper-heuristic optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coates, Graham</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trevelyan, Jon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">48(2013), 4 vom: 21. Apr., Seite 807-819</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:807-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-013-0928-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">807-819</subfield></datafield></record></collection>
|
author |
Allen, Jonathan G. |
spellingShingle |
Allen, Jonathan G. ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Aircraft conceptual design misc Structural optimization misc Hyper-heuristic optimization A hyper-heuristic approach to aircraft structural design optimization |
authorStr |
Allen, Jonathan G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312415958 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1615-147X |
topic_title |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl A hyper-heuristic approach to aircraft structural design optimization Aircraft conceptual design Structural optimization Hyper-heuristic optimization |
topic |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Aircraft conceptual design misc Structural optimization misc Hyper-heuristic optimization |
topic_unstemmed |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Aircraft conceptual design misc Structural optimization misc Hyper-heuristic optimization |
topic_browse |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Aircraft conceptual design misc Structural optimization misc Hyper-heuristic optimization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Structural and multidisciplinary optimization |
hierarchy_parent_id |
312415958 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Structural and multidisciplinary optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 |
title |
A hyper-heuristic approach to aircraft structural design optimization |
ctrlnum |
(DE-627)OLC2051776970 (DE-He213)s00158-013-0928-3-p |
title_full |
A hyper-heuristic approach to aircraft structural design optimization |
author_sort |
Allen, Jonathan G. |
journal |
Structural and multidisciplinary optimization |
journalStr |
Structural and multidisciplinary optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
807 |
author_browse |
Allen, Jonathan G. Coates, Graham Trevelyan, Jon |
container_volume |
48 |
class |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl |
format_se |
Aufsätze |
author-letter |
Allen, Jonathan G. |
doi_str_mv |
10.1007/s00158-013-0928-3 |
normlink |
181571455 |
normlink_prefix_str_mv |
181571455 (DE-625)181571455 |
dewey-full |
510 |
title_sort |
a hyper-heuristic approach to aircraft structural design optimization |
title_auth |
A hyper-heuristic approach to aircraft structural design optimization |
abstract |
Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. © Springer-Verlag Berlin Heidelberg 2013 |
abstractGer |
Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. © Springer-Verlag Berlin Heidelberg 2013 |
abstract_unstemmed |
Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time. © Springer-Verlag Berlin Heidelberg 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
A hyper-heuristic approach to aircraft structural design optimization |
url |
https://doi.org/10.1007/s00158-013-0928-3 |
remote_bool |
false |
author2 |
Coates, Graham Trevelyan, Jon |
author2Str |
Coates, Graham Trevelyan, Jon |
ppnlink |
312415958 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00158-013-0928-3 |
up_date |
2024-07-04T05:16:23.727Z |
_version_ |
1803624312973819904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051776970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065022.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-013-0928-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051776970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-013-0928-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Allen, Jonathan G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A hyper-heuristic approach to aircraft structural design optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The conceptual design of an aircraft is a challenging problem in which optimization can be of great importance to the quality of design generated. Mass optimization of the structural design of an aircraft aims to produce an airframe of minimal mass whilst maintaining satisfactory strength under various loading conditions due to flight and ground manoeuvres. Hyper-heuristic optimization is an evolving field of research wherein the optimization process is continuously adapted in order to provide greater improvements in the quality of the solution generated. The relative infancy of hyper-heuristic optimization has resulted in limited application within the field of aerospace design. This paper describes a framework for the mass optimization of the structural layout of an aircraft at the conceptual level of design employing a novel hyper-heuristic approach. This hyper-heuristic approach encourages solution space exploration, thus reducing the likelihood of premature convergence, and improves the feasibility of and convergence upon the best solution found. A case study is presented to illustrate the effects of hyper-heuristics on the problem for a large commercial aircraft. Resulting solutions were generated of considerably lighter mass than the baseline aircraft. A further improvement in solution quality was found with the use of the hyper-heuristics compared to that obtained without, albeit with a penalty on computation time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft conceptual design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyper-heuristic optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coates, Graham</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trevelyan, Jon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">48(2013), 4 vom: 21. Apr., Seite 807-819</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:807-819</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-013-0928-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">807-819</subfield></datafield></record></collection>
|
score |
7.40158 |