Metamodel selection based on stepwise regression
Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approxim...
Ausführliche Beschreibung
Autor*in: |
Zhou, XiaoJian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Structural and multidisciplinary optimization - Springer Berlin Heidelberg, 2000, 54(2016), 3 vom: 25. Apr., Seite 641-657 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2016 ; number:3 ; day:25 ; month:04 ; pages:641-657 |
Links: |
---|
DOI / URN: |
10.1007/s00158-016-1442-1 |
---|
Katalog-ID: |
OLC2051781788 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051781788 | ||
003 | DE-627 | ||
005 | 20230401065124.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00158-016-1442-1 |2 doi | |
035 | |a (DE-627)OLC2051781788 | ||
035 | |a (DE-He213)s00158-016-1442-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
084 | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |2 bkl | ||
100 | 1 | |a Zhou, XiaoJian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metamodel selection based on stepwise regression |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. | ||
650 | 4 | |a Metamodel | |
650 | 4 | |a Surrogate | |
650 | 4 | |a Ensemble | |
650 | 4 | |a Stepwise | |
650 | 4 | |a Design of experiment | |
700 | 1 | |a Jiang, Ting |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Structural and multidisciplinary optimization |d Springer Berlin Heidelberg, 2000 |g 54(2016), 3 vom: 25. Apr., Seite 641-657 |w (DE-627)312415958 |w (DE-600)2009366-4 |w (DE-576)090895207 |x 1615-147X |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2016 |g number:3 |g day:25 |g month:04 |g pages:641-657 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00158-016-1442-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |q VZ |0 181571455 |0 (DE-625)181571455 |
951 | |a AR | ||
952 | |d 54 |j 2016 |e 3 |b 25 |c 04 |h 641-657 |
author_variant |
x z xz t j tj |
---|---|
matchkey_str |
article:1615147X:2016----::eaoeslcinaeosew |
hierarchy_sort_str |
2016 |
bklnumber |
50.03$jMethoden und Techniken der Ingenieurwissenschaften |
publishDate |
2016 |
allfields |
10.1007/s00158-016-1442-1 doi (DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Zhou, XiaoJian verfasserin aut Metamodel selection based on stepwise regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. Metamodel Surrogate Ensemble Stepwise Design of experiment Jiang, Ting aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 54(2016), 3 vom: 25. Apr., Seite 641-657 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:54 year:2016 number:3 day:25 month:04 pages:641-657 https://doi.org/10.1007/s00158-016-1442-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 54 2016 3 25 04 641-657 |
spelling |
10.1007/s00158-016-1442-1 doi (DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Zhou, XiaoJian verfasserin aut Metamodel selection based on stepwise regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. Metamodel Surrogate Ensemble Stepwise Design of experiment Jiang, Ting aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 54(2016), 3 vom: 25. Apr., Seite 641-657 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:54 year:2016 number:3 day:25 month:04 pages:641-657 https://doi.org/10.1007/s00158-016-1442-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 54 2016 3 25 04 641-657 |
allfields_unstemmed |
10.1007/s00158-016-1442-1 doi (DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Zhou, XiaoJian verfasserin aut Metamodel selection based on stepwise regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. Metamodel Surrogate Ensemble Stepwise Design of experiment Jiang, Ting aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 54(2016), 3 vom: 25. Apr., Seite 641-657 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:54 year:2016 number:3 day:25 month:04 pages:641-657 https://doi.org/10.1007/s00158-016-1442-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 54 2016 3 25 04 641-657 |
allfieldsGer |
10.1007/s00158-016-1442-1 doi (DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Zhou, XiaoJian verfasserin aut Metamodel selection based on stepwise regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. Metamodel Surrogate Ensemble Stepwise Design of experiment Jiang, Ting aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 54(2016), 3 vom: 25. Apr., Seite 641-657 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:54 year:2016 number:3 day:25 month:04 pages:641-657 https://doi.org/10.1007/s00158-016-1442-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 54 2016 3 25 04 641-657 |
allfieldsSound |
10.1007/s00158-016-1442-1 doi (DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Zhou, XiaoJian verfasserin aut Metamodel selection based on stepwise regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. Metamodel Surrogate Ensemble Stepwise Design of experiment Jiang, Ting aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 54(2016), 3 vom: 25. Apr., Seite 641-657 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:54 year:2016 number:3 day:25 month:04 pages:641-657 https://doi.org/10.1007/s00158-016-1442-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 54 2016 3 25 04 641-657 |
language |
English |
source |
Enthalten in Structural and multidisciplinary optimization 54(2016), 3 vom: 25. Apr., Seite 641-657 volume:54 year:2016 number:3 day:25 month:04 pages:641-657 |
sourceStr |
Enthalten in Structural and multidisciplinary optimization 54(2016), 3 vom: 25. Apr., Seite 641-657 volume:54 year:2016 number:3 day:25 month:04 pages:641-657 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metamodel Surrogate Ensemble Stepwise Design of experiment |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Structural and multidisciplinary optimization |
authorswithroles_txt_mv |
Zhou, XiaoJian @@aut@@ Jiang, Ting @@aut@@ |
publishDateDaySort_date |
2016-04-25T00:00:00Z |
hierarchy_top_id |
312415958 |
dewey-sort |
3510 |
id |
OLC2051781788 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051781788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-016-1442-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051781788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-016-1442-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoJian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metamodel selection based on stepwise regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamodel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stepwise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design of experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">54(2016), 3 vom: 25. Apr., Seite 641-657</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:641-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-016-1442-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">04</subfield><subfield code="h">641-657</subfield></datafield></record></collection>
|
author |
Zhou, XiaoJian |
spellingShingle |
Zhou, XiaoJian ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Metamodel misc Surrogate misc Ensemble misc Stepwise misc Design of experiment Metamodel selection based on stepwise regression |
authorStr |
Zhou, XiaoJian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312415958 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1615-147X |
topic_title |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Metamodel selection based on stepwise regression Metamodel Surrogate Ensemble Stepwise Design of experiment |
topic |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Metamodel misc Surrogate misc Ensemble misc Stepwise misc Design of experiment |
topic_unstemmed |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Metamodel misc Surrogate misc Ensemble misc Stepwise misc Design of experiment |
topic_browse |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Metamodel misc Surrogate misc Ensemble misc Stepwise misc Design of experiment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Structural and multidisciplinary optimization |
hierarchy_parent_id |
312415958 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Structural and multidisciplinary optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 |
title |
Metamodel selection based on stepwise regression |
ctrlnum |
(DE-627)OLC2051781788 (DE-He213)s00158-016-1442-1-p |
title_full |
Metamodel selection based on stepwise regression |
author_sort |
Zhou, XiaoJian |
journal |
Structural and multidisciplinary optimization |
journalStr |
Structural and multidisciplinary optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
641 |
author_browse |
Zhou, XiaoJian Jiang, Ting |
container_volume |
54 |
class |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl |
format_se |
Aufsätze |
author-letter |
Zhou, XiaoJian |
doi_str_mv |
10.1007/s00158-016-1442-1 |
normlink |
181571455 |
normlink_prefix_str_mv |
181571455 (DE-625)181571455 |
dewey-full |
510 |
title_sort |
metamodel selection based on stepwise regression |
title_auth |
Metamodel selection based on stepwise regression |
abstract |
Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Metamodel selection based on stepwise regression |
url |
https://doi.org/10.1007/s00158-016-1442-1 |
remote_bool |
false |
author2 |
Jiang, Ting |
author2Str |
Jiang, Ting |
ppnlink |
312415958 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00158-016-1442-1 |
up_date |
2024-07-04T05:17:09.443Z |
_version_ |
1803624360903180288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051781788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-016-1442-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051781788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-016-1442-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoJian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metamodel selection based on stepwise regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Metamodels are often used to replace expensive simulations of engineering problems. When a training set is given, a series of metamodels can be constructed, and then there are two strategies to deal with these metamodels: (1) picking out the best one with the highest accuracy as an approximation of the computationally intensive simulation; and (2) combining all of them into an ensemble model. However, since the choice of approximate model depends on design of experiments (DOEs), employing of the first strategy thus increases the risk of adopting an inappropriate model. Nevertheless, the second strategy also seems not to be a good choice, since adding redundant metamodels may lead to loss of accuracy. Therefore, it is a necessary step to eliminate the redundant metamodels from the set of the candidates before constructing the final ensemble. Illuminated by the method of variable selection widely used in polynomial regression, a metamodel selection method based on stepwise regression is proposed. In our method, just a subset of n ones (n ≤ p, where p is the number of all of the candidate metamodels) is used. In addition, a new ensemble technique is proposed from the view of polynomial regression in this work. This new ensemble technique, combined with metamodel selection method, has been evaluated using six benchmark problems. The results show that eliminating the redundant metamodels before constructing the ensemble can provide more ideal prediction accuracy than directly constructing the ensemble by utilizing all of the candidates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamodel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stepwise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design of experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">54(2016), 3 vom: 25. Apr., Seite 641-657</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:641-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-016-1442-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">04</subfield><subfield code="h">641-657</subfield></datafield></record></collection>
|
score |
7.4012156 |