Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration
Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization t...
Ausführliche Beschreibung
Autor*in: |
Lee, Guesuk [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Structural and multidisciplinary optimization - Springer Berlin Heidelberg, 2000, 60(2019), 4 vom: 10. Aug., Seite 1355-1372 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2019 ; number:4 ; day:10 ; month:08 ; pages:1355-1372 |
Links: |
---|
DOI / URN: |
10.1007/s00158-019-02351-2 |
---|
Katalog-ID: |
OLC2051790469 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2051790469 | ||
003 | DE-627 | ||
005 | 20230401065328.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00158-019-02351-2 |2 doi | |
035 | |a (DE-627)OLC2051790469 | ||
035 | |a (DE-He213)s00158-019-02351-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
084 | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |2 bkl | ||
100 | 1 | |a Lee, Guesuk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. | ||
650 | 4 | |a Optimization-based model calibration (OBMC) | |
650 | 4 | |a Optimization under uncertainty (OUU) | |
650 | 4 | |a Uncertainty propagation (UP) | |
650 | 4 | |a Sequential optimization and uncertainty propagation (SOUP) | |
650 | 4 | |a Moment matching metric | |
700 | 1 | |a Son, Hyejeong |4 aut | |
700 | 1 | |a Youn, Byeng D. |0 (orcid)0000-0003-0135-3660 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Structural and multidisciplinary optimization |d Springer Berlin Heidelberg, 2000 |g 60(2019), 4 vom: 10. Aug., Seite 1355-1372 |w (DE-627)312415958 |w (DE-600)2009366-4 |w (DE-576)090895207 |x 1615-147X |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2019 |g number:4 |g day:10 |g month:08 |g pages:1355-1372 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00158-019-02351-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 50.03$jMethoden und Techniken der Ingenieurwissenschaften |q VZ |0 181571455 |0 (DE-625)181571455 |
951 | |a AR | ||
952 | |d 60 |j 2019 |e 4 |b 10 |c 08 |h 1355-1372 |
author_variant |
g l gl h s hs b d y bd bdy |
---|---|
matchkey_str |
article:1615147X:2019----::eunilpiiainnucranyrpgtomtofrfiinotmz |
hierarchy_sort_str |
2019 |
bklnumber |
50.03$jMethoden und Techniken der Ingenieurwissenschaften |
publishDate |
2019 |
allfields |
10.1007/s00158-019-02351-2 doi (DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Lee, Guesuk verfasserin aut Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric Son, Hyejeong aut Youn, Byeng D. (orcid)0000-0003-0135-3660 aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 60(2019), 4 vom: 10. Aug., Seite 1355-1372 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 https://doi.org/10.1007/s00158-019-02351-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 60 2019 4 10 08 1355-1372 |
spelling |
10.1007/s00158-019-02351-2 doi (DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Lee, Guesuk verfasserin aut Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric Son, Hyejeong aut Youn, Byeng D. (orcid)0000-0003-0135-3660 aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 60(2019), 4 vom: 10. Aug., Seite 1355-1372 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 https://doi.org/10.1007/s00158-019-02351-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 60 2019 4 10 08 1355-1372 |
allfields_unstemmed |
10.1007/s00158-019-02351-2 doi (DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Lee, Guesuk verfasserin aut Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric Son, Hyejeong aut Youn, Byeng D. (orcid)0000-0003-0135-3660 aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 60(2019), 4 vom: 10. Aug., Seite 1355-1372 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 https://doi.org/10.1007/s00158-019-02351-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 60 2019 4 10 08 1355-1372 |
allfieldsGer |
10.1007/s00158-019-02351-2 doi (DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Lee, Guesuk verfasserin aut Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric Son, Hyejeong aut Youn, Byeng D. (orcid)0000-0003-0135-3660 aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 60(2019), 4 vom: 10. Aug., Seite 1355-1372 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 https://doi.org/10.1007/s00158-019-02351-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 60 2019 4 10 08 1355-1372 |
allfieldsSound |
10.1007/s00158-019-02351-2 doi (DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Lee, Guesuk verfasserin aut Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric Son, Hyejeong aut Youn, Byeng D. (orcid)0000-0003-0135-3660 aut Enthalten in Structural and multidisciplinary optimization Springer Berlin Heidelberg, 2000 60(2019), 4 vom: 10. Aug., Seite 1355-1372 (DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 1615-147X nnns volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 https://doi.org/10.1007/s00158-019-02351-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 50.03$jMethoden und Techniken der Ingenieurwissenschaften VZ 181571455 (DE-625)181571455 AR 60 2019 4 10 08 1355-1372 |
language |
English |
source |
Enthalten in Structural and multidisciplinary optimization 60(2019), 4 vom: 10. Aug., Seite 1355-1372 volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 |
sourceStr |
Enthalten in Structural and multidisciplinary optimization 60(2019), 4 vom: 10. Aug., Seite 1355-1372 volume:60 year:2019 number:4 day:10 month:08 pages:1355-1372 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Structural and multidisciplinary optimization |
authorswithroles_txt_mv |
Lee, Guesuk @@aut@@ Son, Hyejeong @@aut@@ Youn, Byeng D. @@aut@@ |
publishDateDaySort_date |
2019-08-10T00:00:00Z |
hierarchy_top_id |
312415958 |
dewey-sort |
3510 |
id |
OLC2051790469 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051790469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065328.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-019-02351-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051790469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-019-02351-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Guesuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization-based model calibration (OBMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization under uncertainty (OUU)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty propagation (UP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequential optimization and uncertainty propagation (SOUP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moment matching metric</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Son, Hyejeong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Youn, Byeng D.</subfield><subfield code="0">(orcid)0000-0003-0135-3660</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">60(2019), 4 vom: 10. Aug., Seite 1355-1372</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1355-1372</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-019-02351-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">08</subfield><subfield code="h">1355-1372</subfield></datafield></record></collection>
|
author |
Lee, Guesuk |
spellingShingle |
Lee, Guesuk ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Optimization-based model calibration (OBMC) misc Optimization under uncertainty (OUU) misc Uncertainty propagation (UP) misc Sequential optimization and uncertainty propagation (SOUP) misc Moment matching metric Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
authorStr |
Lee, Guesuk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312415958 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1615-147X |
topic_title |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration Optimization-based model calibration (OBMC) Optimization under uncertainty (OUU) Uncertainty propagation (UP) Sequential optimization and uncertainty propagation (SOUP) Moment matching metric |
topic |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Optimization-based model calibration (OBMC) misc Optimization under uncertainty (OUU) misc Uncertainty propagation (UP) misc Sequential optimization and uncertainty propagation (SOUP) misc Moment matching metric |
topic_unstemmed |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Optimization-based model calibration (OBMC) misc Optimization under uncertainty (OUU) misc Uncertainty propagation (UP) misc Sequential optimization and uncertainty propagation (SOUP) misc Moment matching metric |
topic_browse |
ddc 510 ssgn 11 bkl 50.03$jMethoden und Techniken der Ingenieurwissenschaften misc Optimization-based model calibration (OBMC) misc Optimization under uncertainty (OUU) misc Uncertainty propagation (UP) misc Sequential optimization and uncertainty propagation (SOUP) misc Moment matching metric |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Structural and multidisciplinary optimization |
hierarchy_parent_id |
312415958 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Structural and multidisciplinary optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312415958 (DE-600)2009366-4 (DE-576)090895207 |
title |
Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
ctrlnum |
(DE-627)OLC2051790469 (DE-He213)s00158-019-02351-2-p |
title_full |
Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
author_sort |
Lee, Guesuk |
journal |
Structural and multidisciplinary optimization |
journalStr |
Structural and multidisciplinary optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1355 |
author_browse |
Lee, Guesuk Son, Hyejeong Youn, Byeng D. |
container_volume |
60 |
class |
510 VZ 11 ssgn 50.03$jMethoden und Techniken der Ingenieurwissenschaften bkl |
format_se |
Aufsätze |
author-letter |
Lee, Guesuk |
doi_str_mv |
10.1007/s00158-019-02351-2 |
normlink |
(ORCID)0000-0003-0135-3660 181571455 |
normlink_prefix_str_mv |
(orcid)0000-0003-0135-3660 181571455 (DE-625)181571455 |
dewey-full |
510 |
title_sort |
sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
title_auth |
Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
abstract |
Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration |
url |
https://doi.org/10.1007/s00158-019-02351-2 |
remote_bool |
false |
author2 |
Son, Hyejeong Youn, Byeng D. |
author2Str |
Son, Hyejeong Youn, Byeng D. |
ppnlink |
312415958 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00158-019-02351-2 |
up_date |
2024-07-04T05:18:33.423Z |
_version_ |
1803624448967835648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2051790469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401065328.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00158-019-02351-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2051790469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00158-019-02351-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Guesuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sequential optimization and uncertainty propagation method for efficient optimization-based model calibration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The goal of model calibration is to improve the predictive capability of a computational model by estimating the unknown input variables of the model. Optimization-based model calibration (OBMC) is a probabilistic way to estimate the unknown input variables through the use of optimization techniques. Performing optimization in a probabilistic sense requires a high computational cost to obtain statistics about the outputs at every iteration of the optimization. To improve optimization efficiency, this paper proposes a sequential optimization-based model calibration approach that makes use of first an efficient, and then a highly accurate probabilistic assessment method, in sequence. At the earlier stage of the sequential optimizations, approximate integration methods are used to accelerate the probabilistic assessment process. As a calibration metric, the moment matching metric is devised to use the obtained statistics of the outputs. When the optimization reaches near-convergence, a more accurate method, such as a sampling method with an accurate surrogate model, is substituted for the probabilistic assessment. Thus, this paper provides an efficient and accurate procedure for optimization-based model calibration. Two engineering applications, model calibration of a shallow strip footing model and an automotive steering wheel-column model, are presented to demonstrate the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization-based model calibration (OBMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization under uncertainty (OUU)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty propagation (UP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequential optimization and uncertainty propagation (SOUP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moment matching metric</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Son, Hyejeong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Youn, Byeng D.</subfield><subfield code="0">(orcid)0000-0003-0135-3660</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Structural and multidisciplinary optimization</subfield><subfield code="d">Springer Berlin Heidelberg, 2000</subfield><subfield code="g">60(2019), 4 vom: 10. Aug., Seite 1355-1372</subfield><subfield code="w">(DE-627)312415958</subfield><subfield code="w">(DE-600)2009366-4</subfield><subfield code="w">(DE-576)090895207</subfield><subfield code="x">1615-147X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1355-1372</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00158-019-02351-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03$jMethoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield><subfield code="0">181571455</subfield><subfield code="0">(DE-625)181571455</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">08</subfield><subfield code="h">1355-1372</subfield></datafield></record></collection>
|
score |
7.4021006 |