Practical issues in handling data input and uncertainty in a budget impact analysis
Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA...
Ausführliche Beschreibung
Autor*in: |
Nuijten, M. J. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: The European journal of health economics - Springer-Verlag, 2001, 12(2010), 3 vom: 03. Apr., Seite 231-241 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2010 ; number:3 ; day:03 ; month:04 ; pages:231-241 |
Links: |
---|
DOI / URN: |
10.1007/s10198-010-0236-4 |
---|
Katalog-ID: |
OLC2052291717 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052291717 | ||
003 | DE-627 | ||
005 | 20230502175501.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10198-010-0236-4 |2 doi | |
035 | |a (DE-627)OLC2052291717 | ||
035 | |a (DE-He213)s10198-010-0236-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.05$jGesundheitsökonomie |2 bkl | ||
084 | |a 44.10$jGesundheitswesen: Allgemeines |2 bkl | ||
100 | 1 | |a Nuijten, M. J. C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Practical issues in handling data input and uncertainty in a budget impact analysis |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2010 | ||
520 | |a Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. | ||
650 | 4 | |a Budget impact | |
650 | 4 | |a Model | |
650 | 4 | |a Data source | |
700 | 1 | |a Mittendorf, T. |4 aut | |
700 | 1 | |a Persson, U. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The European journal of health economics |d Springer-Verlag, 2001 |g 12(2010), 3 vom: 03. Apr., Seite 231-241 |w (DE-627)328188557 |w (DE-600)2045253-6 |w (DE-576)09442246X |x 1618-7598 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2010 |g number:3 |g day:03 |g month:04 |g pages:231-241 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10198-010-0236-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_287 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4314 | ||
936 | b | k | |a 44.05$jGesundheitsökonomie |q VZ |0 106409611 |0 (DE-625)106409611 |
936 | b | k | |a 44.10$jGesundheitswesen: Allgemeines |q VZ |0 106409530 |0 (DE-625)106409530 |
951 | |a AR | ||
952 | |d 12 |j 2010 |e 3 |b 03 |c 04 |h 231-241 |
author_variant |
m j c n mjc mjcn t m tm u p up |
---|---|
matchkey_str |
article:16187598:2010----::rciaiseihnlndtiptnucranyn |
hierarchy_sort_str |
2010 |
bklnumber |
44.05$jGesundheitsökonomie 44.10$jGesundheitswesen: Allgemeines |
publishDate |
2010 |
allfields |
10.1007/s10198-010-0236-4 doi (DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p DE-627 ger DE-627 rakwb eng 330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Nuijten, M. J. C. verfasserin aut Practical issues in handling data input and uncertainty in a budget impact analysis 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2010 Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. Budget impact Model Data source Mittendorf, T. aut Persson, U. aut Enthalten in The European journal of health economics Springer-Verlag, 2001 12(2010), 3 vom: 03. Apr., Seite 231-241 (DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X 1618-7598 nnns volume:12 year:2010 number:3 day:03 month:04 pages:231-241 https://doi.org/10.1007/s10198-010-0236-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 44.05$jGesundheitsökonomie VZ 106409611 (DE-625)106409611 44.10$jGesundheitswesen: Allgemeines VZ 106409530 (DE-625)106409530 AR 12 2010 3 03 04 231-241 |
spelling |
10.1007/s10198-010-0236-4 doi (DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p DE-627 ger DE-627 rakwb eng 330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Nuijten, M. J. C. verfasserin aut Practical issues in handling data input and uncertainty in a budget impact analysis 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2010 Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. Budget impact Model Data source Mittendorf, T. aut Persson, U. aut Enthalten in The European journal of health economics Springer-Verlag, 2001 12(2010), 3 vom: 03. Apr., Seite 231-241 (DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X 1618-7598 nnns volume:12 year:2010 number:3 day:03 month:04 pages:231-241 https://doi.org/10.1007/s10198-010-0236-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 44.05$jGesundheitsökonomie VZ 106409611 (DE-625)106409611 44.10$jGesundheitswesen: Allgemeines VZ 106409530 (DE-625)106409530 AR 12 2010 3 03 04 231-241 |
allfields_unstemmed |
10.1007/s10198-010-0236-4 doi (DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p DE-627 ger DE-627 rakwb eng 330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Nuijten, M. J. C. verfasserin aut Practical issues in handling data input and uncertainty in a budget impact analysis 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2010 Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. Budget impact Model Data source Mittendorf, T. aut Persson, U. aut Enthalten in The European journal of health economics Springer-Verlag, 2001 12(2010), 3 vom: 03. Apr., Seite 231-241 (DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X 1618-7598 nnns volume:12 year:2010 number:3 day:03 month:04 pages:231-241 https://doi.org/10.1007/s10198-010-0236-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 44.05$jGesundheitsökonomie VZ 106409611 (DE-625)106409611 44.10$jGesundheitswesen: Allgemeines VZ 106409530 (DE-625)106409530 AR 12 2010 3 03 04 231-241 |
allfieldsGer |
10.1007/s10198-010-0236-4 doi (DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p DE-627 ger DE-627 rakwb eng 330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Nuijten, M. J. C. verfasserin aut Practical issues in handling data input and uncertainty in a budget impact analysis 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2010 Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. Budget impact Model Data source Mittendorf, T. aut Persson, U. aut Enthalten in The European journal of health economics Springer-Verlag, 2001 12(2010), 3 vom: 03. Apr., Seite 231-241 (DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X 1618-7598 nnns volume:12 year:2010 number:3 day:03 month:04 pages:231-241 https://doi.org/10.1007/s10198-010-0236-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 44.05$jGesundheitsökonomie VZ 106409611 (DE-625)106409611 44.10$jGesundheitswesen: Allgemeines VZ 106409530 (DE-625)106409530 AR 12 2010 3 03 04 231-241 |
allfieldsSound |
10.1007/s10198-010-0236-4 doi (DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p DE-627 ger DE-627 rakwb eng 330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Nuijten, M. J. C. verfasserin aut Practical issues in handling data input and uncertainty in a budget impact analysis 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2010 Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. Budget impact Model Data source Mittendorf, T. aut Persson, U. aut Enthalten in The European journal of health economics Springer-Verlag, 2001 12(2010), 3 vom: 03. Apr., Seite 231-241 (DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X 1618-7598 nnns volume:12 year:2010 number:3 day:03 month:04 pages:231-241 https://doi.org/10.1007/s10198-010-0236-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 44.05$jGesundheitsökonomie VZ 106409611 (DE-625)106409611 44.10$jGesundheitswesen: Allgemeines VZ 106409530 (DE-625)106409530 AR 12 2010 3 03 04 231-241 |
language |
English |
source |
Enthalten in The European journal of health economics 12(2010), 3 vom: 03. Apr., Seite 231-241 volume:12 year:2010 number:3 day:03 month:04 pages:231-241 |
sourceStr |
Enthalten in The European journal of health economics 12(2010), 3 vom: 03. Apr., Seite 231-241 volume:12 year:2010 number:3 day:03 month:04 pages:231-241 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Budget impact Model Data source |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
The European journal of health economics |
authorswithroles_txt_mv |
Nuijten, M. J. C. @@aut@@ Mittendorf, T. @@aut@@ Persson, U. @@aut@@ |
publishDateDaySort_date |
2010-04-03T00:00:00Z |
hierarchy_top_id |
328188557 |
dewey-sort |
3330 |
id |
OLC2052291717 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052291717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502175501.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10198-010-0236-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052291717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10198-010-0236-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.05$jGesundheitsökonomie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.10$jGesundheitswesen: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nuijten, M. J. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical issues in handling data input and uncertainty in a budget impact analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Budget impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data source</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittendorf, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Persson, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European journal of health economics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">12(2010), 3 vom: 03. Apr., Seite 231-241</subfield><subfield code="w">(DE-627)328188557</subfield><subfield code="w">(DE-600)2045253-6</subfield><subfield code="w">(DE-576)09442246X</subfield><subfield code="x">1618-7598</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:231-241</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10198-010-0236-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.05$jGesundheitsökonomie</subfield><subfield code="q">VZ</subfield><subfield code="0">106409611</subfield><subfield code="0">(DE-625)106409611</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.10$jGesundheitswesen: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106409530</subfield><subfield code="0">(DE-625)106409530</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">04</subfield><subfield code="h">231-241</subfield></datafield></record></collection>
|
author |
Nuijten, M. J. C. |
spellingShingle |
Nuijten, M. J. C. ddc 330 ddc 610 bkl 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines misc Budget impact misc Model misc Data source Practical issues in handling data input and uncertainty in a budget impact analysis |
authorStr |
Nuijten, M. J. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328188557 |
format |
Article |
dewey-ones |
330 - Economics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1618-7598 |
topic_title |
330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl Practical issues in handling data input and uncertainty in a budget impact analysis Budget impact Model Data source |
topic |
ddc 330 ddc 610 bkl 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines misc Budget impact misc Model misc Data source |
topic_unstemmed |
ddc 330 ddc 610 bkl 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines misc Budget impact misc Model misc Data source |
topic_browse |
ddc 330 ddc 610 bkl 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines misc Budget impact misc Model misc Data source |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The European journal of health economics |
hierarchy_parent_id |
328188557 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
The European journal of health economics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)328188557 (DE-600)2045253-6 (DE-576)09442246X |
title |
Practical issues in handling data input and uncertainty in a budget impact analysis |
ctrlnum |
(DE-627)OLC2052291717 (DE-He213)s10198-010-0236-4-p |
title_full |
Practical issues in handling data input and uncertainty in a budget impact analysis |
author_sort |
Nuijten, M. J. C. |
journal |
The European journal of health economics |
journalStr |
The European journal of health economics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
231 |
author_browse |
Nuijten, M. J. C. Mittendorf, T. Persson, U. |
container_volume |
12 |
class |
330 610 VZ 610 VZ 44.05$jGesundheitsökonomie bkl 44.10$jGesundheitswesen: Allgemeines bkl |
format_se |
Aufsätze |
author-letter |
Nuijten, M. J. C. |
doi_str_mv |
10.1007/s10198-010-0236-4 |
normlink |
106409611 106409530 |
normlink_prefix_str_mv |
106409611 (DE-625)106409611 106409530 (DE-625)106409530 |
dewey-full |
330 610 |
title_sort |
practical issues in handling data input and uncertainty in a budget impact analysis |
title_auth |
Practical issues in handling data input and uncertainty in a budget impact analysis |
abstract |
Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. © The Author(s) 2010 |
abstractGer |
Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. © The Author(s) 2010 |
abstract_unstemmed |
Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model. © The Author(s) 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_26 GBV_ILN_267 GBV_ILN_287 GBV_ILN_2018 GBV_ILN_2026 GBV_ILN_4219 GBV_ILN_4277 GBV_ILN_4314 |
container_issue |
3 |
title_short |
Practical issues in handling data input and uncertainty in a budget impact analysis |
url |
https://doi.org/10.1007/s10198-010-0236-4 |
remote_bool |
false |
author2 |
Mittendorf, T. Persson, U. |
author2Str |
Mittendorf, T. Persson, U. |
ppnlink |
328188557 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10198-010-0236-4 |
up_date |
2024-07-03T14:31:44.872Z |
_version_ |
1803568655763505152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052291717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502175501.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10198-010-0236-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052291717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10198-010-0236-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.05$jGesundheitsökonomie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.10$jGesundheitswesen: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nuijten, M. J. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical issues in handling data input and uncertainty in a budget impact analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this paper was to address the importance of dealing systematically and comprehensively with uncertainty in a budget impact analysis (BIA) in more detail. The handling of uncertainty in health economics was used as a point of reference for addressing the uncertainty in a BIA. This overview shows that standard methods of sensitivity analysis, which are used for standard data set in a health economic model (clinical probabilities, treatment patterns, resource utilisation and prices/tariffs), cannot always be used for the input data for the BIA model beyond the health economic data set for various reasons. Whereas in a health economic model, only limited data may come from a Delphi panel, a BIA model often relies on a majority of data taken from a Delphi panel. In addition, the dataset in a BIA model also includes forecasts (e.g. annual growth, uptakes curves, substitution effects, changes in prescription restrictions and guidelines, future distribution of the available treatment modalities, off-label use). As a consequence, the use of standard sensitivity analyses for BIA data set might be limited because of the lack of appropriate distributions as data sources are limited, or because of the need for forecasting. Therefore, scenario analyses might be more appropriate to capture the uncertainty in the BIA data set in the overall BIA model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Budget impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data source</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mittendorf, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Persson, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European journal of health economics</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">12(2010), 3 vom: 03. Apr., Seite 231-241</subfield><subfield code="w">(DE-627)328188557</subfield><subfield code="w">(DE-600)2045253-6</subfield><subfield code="w">(DE-576)09442246X</subfield><subfield code="x">1618-7598</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:231-241</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10198-010-0236-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.05$jGesundheitsökonomie</subfield><subfield code="q">VZ</subfield><subfield code="0">106409611</subfield><subfield code="0">(DE-625)106409611</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.10$jGesundheitswesen: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106409530</subfield><subfield code="0">(DE-625)106409530</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">04</subfield><subfield code="h">231-241</subfield></datafield></record></collection>
|
score |
7.401908 |