Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents
Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consi...
Ausführliche Beschreibung
Autor*in: |
Steeb, W. -H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of theoretical physics - Kluwer Academic Publishers-Plenum Publishers, 1968, 36(1997), 10 vom: Okt., Seite 2043-2049 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:1997 ; number:10 ; month:10 ; pages:2043-2049 |
Links: |
---|
DOI / URN: |
10.1007/BF02435942 |
---|
Katalog-ID: |
OLC2052344527 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052344527 | ||
003 | DE-627 | ||
005 | 20230503082946.0 | ||
007 | tu | ||
008 | 200820s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02435942 |2 doi | |
035 | |a (DE-627)OLC2052344527 | ||
035 | |a (DE-He213)BF02435942-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Steeb, W. -H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1997 | ||
520 | |a Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. | ||
650 | 4 | |a Chaotic System | |
650 | 4 | |a Jacobian Matrix | |
650 | 4 | |a Hopf Bifurcation | |
650 | 4 | |a Couple System | |
650 | 4 | |a Gradient System | |
700 | 1 | |a van Wyk, M. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of theoretical physics |d Kluwer Academic Publishers-Plenum Publishers, 1968 |g 36(1997), 10 vom: Okt., Seite 2043-2049 |w (DE-627)129546097 |w (DE-600)218277-4 |w (DE-576)014996413 |x 0020-7748 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:1997 |g number:10 |g month:10 |g pages:2043-2049 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02435942 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 36 |j 1997 |e 10 |c 10 |h 2043-2049 |
author_variant |
w - s w- w-s w m a v wma wmav |
---|---|
matchkey_str |
article:00207748:1997----::hsculdolnadnmclytmsaiiyisitgas |
hierarchy_sort_str |
1997 |
bklnumber |
33.00 |
publishDate |
1997 |
allfields |
10.1007/BF02435942 doi (DE-627)OLC2052344527 (DE-He213)BF02435942-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Steeb, W. -H. verfasserin aut Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System van Wyk, M. A. aut Enthalten in International journal of theoretical physics Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 10 vom: Okt., Seite 2043-2049 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:36 year:1997 number:10 month:10 pages:2043-2049 https://doi.org/10.1007/BF02435942 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 33.00 VZ AR 36 1997 10 10 2043-2049 |
spelling |
10.1007/BF02435942 doi (DE-627)OLC2052344527 (DE-He213)BF02435942-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Steeb, W. -H. verfasserin aut Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System van Wyk, M. A. aut Enthalten in International journal of theoretical physics Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 10 vom: Okt., Seite 2043-2049 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:36 year:1997 number:10 month:10 pages:2043-2049 https://doi.org/10.1007/BF02435942 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 33.00 VZ AR 36 1997 10 10 2043-2049 |
allfields_unstemmed |
10.1007/BF02435942 doi (DE-627)OLC2052344527 (DE-He213)BF02435942-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Steeb, W. -H. verfasserin aut Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System van Wyk, M. A. aut Enthalten in International journal of theoretical physics Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 10 vom: Okt., Seite 2043-2049 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:36 year:1997 number:10 month:10 pages:2043-2049 https://doi.org/10.1007/BF02435942 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 33.00 VZ AR 36 1997 10 10 2043-2049 |
allfieldsGer |
10.1007/BF02435942 doi (DE-627)OLC2052344527 (DE-He213)BF02435942-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Steeb, W. -H. verfasserin aut Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System van Wyk, M. A. aut Enthalten in International journal of theoretical physics Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 10 vom: Okt., Seite 2043-2049 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:36 year:1997 number:10 month:10 pages:2043-2049 https://doi.org/10.1007/BF02435942 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 33.00 VZ AR 36 1997 10 10 2043-2049 |
allfieldsSound |
10.1007/BF02435942 doi (DE-627)OLC2052344527 (DE-He213)BF02435942-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Steeb, W. -H. verfasserin aut Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System van Wyk, M. A. aut Enthalten in International journal of theoretical physics Kluwer Academic Publishers-Plenum Publishers, 1968 36(1997), 10 vom: Okt., Seite 2043-2049 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:36 year:1997 number:10 month:10 pages:2043-2049 https://doi.org/10.1007/BF02435942 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 33.00 VZ AR 36 1997 10 10 2043-2049 |
language |
English |
source |
Enthalten in International journal of theoretical physics 36(1997), 10 vom: Okt., Seite 2043-2049 volume:36 year:1997 number:10 month:10 pages:2043-2049 |
sourceStr |
Enthalten in International journal of theoretical physics 36(1997), 10 vom: Okt., Seite 2043-2049 volume:36 year:1997 number:10 month:10 pages:2043-2049 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of theoretical physics |
authorswithroles_txt_mv |
Steeb, W. -H. @@aut@@ van Wyk, M. A. @@aut@@ |
publishDateDaySort_date |
1997-10-01T00:00:00Z |
hierarchy_top_id |
129546097 |
dewey-sort |
3530 |
id |
OLC2052344527 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052344527</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503082946.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02435942</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052344527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02435942-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steeb, W. -H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobian Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf Bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Couple System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Wyk, M. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">36(1997), 10 vom: Okt., Seite 2043-2049</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2043-2049</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02435942</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1997</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">2043-2049</subfield></datafield></record></collection>
|
author |
Steeb, W. -H. |
spellingShingle |
Steeb, W. -H. ddc 530 bkl 33.00 misc Chaotic System misc Jacobian Matrix misc Hopf Bifurcation misc Couple System misc Gradient System Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
authorStr |
Steeb, W. -H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546097 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7748 |
topic_title |
530 VZ 33.00 bkl Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents Chaotic System Jacobian Matrix Hopf Bifurcation Couple System Gradient System |
topic |
ddc 530 bkl 33.00 misc Chaotic System misc Jacobian Matrix misc Hopf Bifurcation misc Couple System misc Gradient System |
topic_unstemmed |
ddc 530 bkl 33.00 misc Chaotic System misc Jacobian Matrix misc Hopf Bifurcation misc Couple System misc Gradient System |
topic_browse |
ddc 530 bkl 33.00 misc Chaotic System misc Jacobian Matrix misc Hopf Bifurcation misc Couple System misc Gradient System |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of theoretical physics |
hierarchy_parent_id |
129546097 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of theoretical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 |
title |
Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
ctrlnum |
(DE-627)OLC2052344527 (DE-He213)BF02435942-p |
title_full |
Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
author_sort |
Steeb, W. -H. |
journal |
International journal of theoretical physics |
journalStr |
International journal of theoretical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
2043 |
author_browse |
Steeb, W. -H. van Wyk, M. A. |
container_volume |
36 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Steeb, W. -H. |
doi_str_mv |
10.1007/BF02435942 |
dewey-full |
530 |
title_sort |
phase-coupled nonlinear dynamical systems, stability, first integrals, and liapunov exponents |
title_auth |
Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
abstract |
Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. © Plenum Publishing Corporation 1997 |
abstractGer |
Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. © Plenum Publishing Corporation 1997 |
abstract_unstemmed |
Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed. © Plenum Publishing Corporation 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2021 GBV_ILN_2279 GBV_ILN_4012 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents |
url |
https://doi.org/10.1007/BF02435942 |
remote_bool |
false |
author2 |
van Wyk, M. A. |
author2Str |
van Wyk, M. A. |
ppnlink |
129546097 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02435942 |
up_date |
2024-07-03T14:44:46.225Z |
_version_ |
1803569475069411328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052344527</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503082946.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02435942</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052344527</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02435942-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steeb, W. -H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-coupled nonlinear dynamical systems, stability, first integrals, and Liapunov exponents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The stability of a class of coupled identical autonomous systems of first-order nonlinear ordinary differential equations is investigated. These couplings play a central role in controlling chaotic systems and can be applied in electronic circuits and laser systems. As applications we consider a coupled van der Pol equation and a coupled logistic map. When the uncoupled system admits a first integral we study whether a first integral exists for the coupled system. Gradient systems and the Painlevé property are also discussed. Finally, the relation of the Liapunov exponents of the uncoupled and coupled systems are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobian Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf Bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Couple System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gradient System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Wyk, M. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1968</subfield><subfield code="g">36(1997), 10 vom: Okt., Seite 2043-2049</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2043-2049</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02435942</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">1997</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">2043-2049</subfield></datafield></record></collection>
|
score |
7.4014273 |