Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence
Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing...
Ausführliche Beschreibung
Autor*in: |
Zhang, Bing-Bing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of theoretical physics - Springer US, 1968, 55(2016), 11 vom: 09. Juli, Seite 4731-4739 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2016 ; number:11 ; day:09 ; month:07 ; pages:4731-4739 |
Links: |
---|
DOI / URN: |
10.1007/s10773-016-3096-6 |
---|
Katalog-ID: |
OLC2052399429 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052399429 | ||
003 | DE-627 | ||
005 | 20230503084858.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10773-016-3096-6 |2 doi | |
035 | |a (DE-627)OLC2052399429 | ||
035 | |a (DE-He213)s10773-016-3096-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Zhang, Bing-Bing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. | ||
650 | 4 | |a Dense coding | |
650 | 4 | |a Initial state | |
650 | 4 | |a Intrinsic decoherence | |
700 | 1 | |a Yang, Guo-Hui |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of theoretical physics |d Springer US, 1968 |g 55(2016), 11 vom: 09. Juli, Seite 4731-4739 |w (DE-627)129546097 |w (DE-600)218277-4 |w (DE-576)014996413 |x 0020-7748 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2016 |g number:11 |g day:09 |g month:07 |g pages:4731-4739 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10773-016-3096-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2016 |e 11 |b 09 |c 07 |h 4731-4739 |
author_variant |
b b z bbz g h y ghy |
---|---|
matchkey_str |
article:00207748:2016----::escdniawsisueigoewtit |
hierarchy_sort_str |
2016 |
bklnumber |
33.00 |
publishDate |
2016 |
allfields |
10.1007/s10773-016-3096-6 doi (DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Zhang, Bing-Bing verfasserin aut Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. Dense coding Initial state Intrinsic decoherence Yang, Guo-Hui aut Enthalten in International journal of theoretical physics Springer US, 1968 55(2016), 11 vom: 09. Juli, Seite 4731-4739 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 https://doi.org/10.1007/s10773-016-3096-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2016 11 09 07 4731-4739 |
spelling |
10.1007/s10773-016-3096-6 doi (DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Zhang, Bing-Bing verfasserin aut Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. Dense coding Initial state Intrinsic decoherence Yang, Guo-Hui aut Enthalten in International journal of theoretical physics Springer US, 1968 55(2016), 11 vom: 09. Juli, Seite 4731-4739 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 https://doi.org/10.1007/s10773-016-3096-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2016 11 09 07 4731-4739 |
allfields_unstemmed |
10.1007/s10773-016-3096-6 doi (DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Zhang, Bing-Bing verfasserin aut Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. Dense coding Initial state Intrinsic decoherence Yang, Guo-Hui aut Enthalten in International journal of theoretical physics Springer US, 1968 55(2016), 11 vom: 09. Juli, Seite 4731-4739 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 https://doi.org/10.1007/s10773-016-3096-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2016 11 09 07 4731-4739 |
allfieldsGer |
10.1007/s10773-016-3096-6 doi (DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Zhang, Bing-Bing verfasserin aut Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. Dense coding Initial state Intrinsic decoherence Yang, Guo-Hui aut Enthalten in International journal of theoretical physics Springer US, 1968 55(2016), 11 vom: 09. Juli, Seite 4731-4739 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 https://doi.org/10.1007/s10773-016-3096-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2016 11 09 07 4731-4739 |
allfieldsSound |
10.1007/s10773-016-3096-6 doi (DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Zhang, Bing-Bing verfasserin aut Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. Dense coding Initial state Intrinsic decoherence Yang, Guo-Hui aut Enthalten in International journal of theoretical physics Springer US, 1968 55(2016), 11 vom: 09. Juli, Seite 4731-4739 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 https://doi.org/10.1007/s10773-016-3096-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 55 2016 11 09 07 4731-4739 |
language |
English |
source |
Enthalten in International journal of theoretical physics 55(2016), 11 vom: 09. Juli, Seite 4731-4739 volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 |
sourceStr |
Enthalten in International journal of theoretical physics 55(2016), 11 vom: 09. Juli, Seite 4731-4739 volume:55 year:2016 number:11 day:09 month:07 pages:4731-4739 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dense coding Initial state Intrinsic decoherence |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of theoretical physics |
authorswithroles_txt_mv |
Zhang, Bing-Bing @@aut@@ Yang, Guo-Hui @@aut@@ |
publishDateDaySort_date |
2016-07-09T00:00:00Z |
hierarchy_top_id |
129546097 |
dewey-sort |
3530 |
id |
OLC2052399429 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052399429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503084858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-016-3096-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052399429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-016-3096-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Bing-Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dense coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intrinsic decoherence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guo-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">55(2016), 11 vom: 09. Juli, Seite 4731-4739</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">day:09</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:4731-4739</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-016-3096-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="b">09</subfield><subfield code="c">07</subfield><subfield code="h">4731-4739</subfield></datafield></record></collection>
|
author |
Zhang, Bing-Bing |
spellingShingle |
Zhang, Bing-Bing ddc 530 bkl 33.00 misc Dense coding misc Initial state misc Intrinsic decoherence Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
authorStr |
Zhang, Bing-Bing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546097 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7748 |
topic_title |
530 VZ 33.00 bkl Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence Dense coding Initial state Intrinsic decoherence |
topic |
ddc 530 bkl 33.00 misc Dense coding misc Initial state misc Intrinsic decoherence |
topic_unstemmed |
ddc 530 bkl 33.00 misc Dense coding misc Initial state misc Intrinsic decoherence |
topic_browse |
ddc 530 bkl 33.00 misc Dense coding misc Initial state misc Intrinsic decoherence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of theoretical physics |
hierarchy_parent_id |
129546097 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of theoretical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 |
title |
Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
ctrlnum |
(DE-627)OLC2052399429 (DE-He213)s10773-016-3096-6-p |
title_full |
Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
author_sort |
Zhang, Bing-Bing |
journal |
International journal of theoretical physics |
journalStr |
International journal of theoretical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
4731 |
author_browse |
Zhang, Bing-Bing Yang, Guo-Hui |
container_volume |
55 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Zhang, Bing-Bing |
doi_str_mv |
10.1007/s10773-016-3096-6 |
dewey-full |
530 |
title_sort |
dense coding in a two-spin squeezing model with intrinsic decoherence |
title_auth |
Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
abstract |
Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
11 |
title_short |
Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence |
url |
https://doi.org/10.1007/s10773-016-3096-6 |
remote_bool |
false |
author2 |
Yang, Guo-Hui |
author2Str |
Yang, Guo-Hui |
ppnlink |
129546097 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10773-016-3096-6 |
up_date |
2024-07-03T14:55:47.588Z |
_version_ |
1803570168575557632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052399429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503084858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-016-3096-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052399429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-016-3096-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Bing-Bing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dense coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intrinsic decoherence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guo-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">55(2016), 11 vom: 09. Juli, Seite 4731-4739</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">day:09</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:4731-4739</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-016-3096-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="b">09</subfield><subfield code="c">07</subfield><subfield code="h">4731-4739</subfield></datafield></record></collection>
|
score |
7.399617 |