Entanglement and Berry Phase in a Parameterized Three-Qubit System
Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same e...
Ausführliche Beschreibung
Autor*in: |
Shao, Wenyi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of theoretical physics - Springer US, 1968, 56(2016), 3 vom: 07. Dez., Seite 643-651 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2016 ; number:3 ; day:07 ; month:12 ; pages:643-651 |
Links: |
---|
DOI / URN: |
10.1007/s10773-016-3206-5 |
---|
Katalog-ID: |
OLC2052400710 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052400710 | ||
003 | DE-627 | ||
005 | 20230503085122.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10773-016-3206-5 |2 doi | |
035 | |a (DE-627)OLC2052400710 | ||
035 | |a (DE-He213)s10773-016-3206-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Shao, Wenyi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Entanglement and Berry Phase in a Parameterized Three-Qubit System |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 1 and 2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 1 = 2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. | ||
650 | 4 | |a Quantum entanglement | |
650 | 4 | |a Berry phase | |
650 | 4 | |a GHZ state | |
700 | 1 | |a Du, Yangyang |4 aut | |
700 | 1 | |a Yang, Qi |4 aut | |
700 | 1 | |a Wang, Gangcheng |4 aut | |
700 | 1 | |a Sun, Chunfang |4 aut | |
700 | 1 | |a Xue, Kang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of theoretical physics |d Springer US, 1968 |g 56(2016), 3 vom: 07. Dez., Seite 643-651 |w (DE-627)129546097 |w (DE-600)218277-4 |w (DE-576)014996413 |x 0020-7748 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2016 |g number:3 |g day:07 |g month:12 |g pages:643-651 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10773-016-3206-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 56 |j 2016 |e 3 |b 07 |c 12 |h 643-651 |
author_variant |
w s ws y d yd q y qy g w gw c s cs k x kx |
---|---|
matchkey_str |
article:00207748:2016----::nageetnbryhsiaaaeeiet |
hierarchy_sort_str |
2016 |
bklnumber |
33.00 |
publishDate |
2016 |
allfields |
10.1007/s10773-016-3206-5 doi (DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Shao, Wenyi verfasserin aut Entanglement and Berry Phase in a Parameterized Three-Qubit System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. Quantum entanglement Berry phase GHZ state Du, Yangyang aut Yang, Qi aut Wang, Gangcheng aut Sun, Chunfang aut Xue, Kang aut Enthalten in International journal of theoretical physics Springer US, 1968 56(2016), 3 vom: 07. Dez., Seite 643-651 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:56 year:2016 number:3 day:07 month:12 pages:643-651 https://doi.org/10.1007/s10773-016-3206-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 56 2016 3 07 12 643-651 |
spelling |
10.1007/s10773-016-3206-5 doi (DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Shao, Wenyi verfasserin aut Entanglement and Berry Phase in a Parameterized Three-Qubit System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. Quantum entanglement Berry phase GHZ state Du, Yangyang aut Yang, Qi aut Wang, Gangcheng aut Sun, Chunfang aut Xue, Kang aut Enthalten in International journal of theoretical physics Springer US, 1968 56(2016), 3 vom: 07. Dez., Seite 643-651 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:56 year:2016 number:3 day:07 month:12 pages:643-651 https://doi.org/10.1007/s10773-016-3206-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 56 2016 3 07 12 643-651 |
allfields_unstemmed |
10.1007/s10773-016-3206-5 doi (DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Shao, Wenyi verfasserin aut Entanglement and Berry Phase in a Parameterized Three-Qubit System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. Quantum entanglement Berry phase GHZ state Du, Yangyang aut Yang, Qi aut Wang, Gangcheng aut Sun, Chunfang aut Xue, Kang aut Enthalten in International journal of theoretical physics Springer US, 1968 56(2016), 3 vom: 07. Dez., Seite 643-651 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:56 year:2016 number:3 day:07 month:12 pages:643-651 https://doi.org/10.1007/s10773-016-3206-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 56 2016 3 07 12 643-651 |
allfieldsGer |
10.1007/s10773-016-3206-5 doi (DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Shao, Wenyi verfasserin aut Entanglement and Berry Phase in a Parameterized Three-Qubit System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. Quantum entanglement Berry phase GHZ state Du, Yangyang aut Yang, Qi aut Wang, Gangcheng aut Sun, Chunfang aut Xue, Kang aut Enthalten in International journal of theoretical physics Springer US, 1968 56(2016), 3 vom: 07. Dez., Seite 643-651 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:56 year:2016 number:3 day:07 month:12 pages:643-651 https://doi.org/10.1007/s10773-016-3206-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 56 2016 3 07 12 643-651 |
allfieldsSound |
10.1007/s10773-016-3206-5 doi (DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Shao, Wenyi verfasserin aut Entanglement and Berry Phase in a Parameterized Three-Qubit System 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. Quantum entanglement Berry phase GHZ state Du, Yangyang aut Yang, Qi aut Wang, Gangcheng aut Sun, Chunfang aut Xue, Kang aut Enthalten in International journal of theoretical physics Springer US, 1968 56(2016), 3 vom: 07. Dez., Seite 643-651 (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:56 year:2016 number:3 day:07 month:12 pages:643-651 https://doi.org/10.1007/s10773-016-3206-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.00 VZ AR 56 2016 3 07 12 643-651 |
language |
English |
source |
Enthalten in International journal of theoretical physics 56(2016), 3 vom: 07. Dez., Seite 643-651 volume:56 year:2016 number:3 day:07 month:12 pages:643-651 |
sourceStr |
Enthalten in International journal of theoretical physics 56(2016), 3 vom: 07. Dez., Seite 643-651 volume:56 year:2016 number:3 day:07 month:12 pages:643-651 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum entanglement Berry phase GHZ state |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of theoretical physics |
authorswithroles_txt_mv |
Shao, Wenyi @@aut@@ Du, Yangyang @@aut@@ Yang, Qi @@aut@@ Wang, Gangcheng @@aut@@ Sun, Chunfang @@aut@@ Xue, Kang @@aut@@ |
publishDateDaySort_date |
2016-12-07T00:00:00Z |
hierarchy_top_id |
129546097 |
dewey-sort |
3530 |
id |
OLC2052400710 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052400710</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503085122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-016-3206-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052400710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-016-3206-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Wenyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Entanglement and Berry Phase in a Parameterized Three-Qubit System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum entanglement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Berry phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GHZ state</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Yangyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gangcheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Chunfang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">56(2016), 3 vom: 07. Dez., Seite 643-651</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:643-651</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-016-3206-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">12</subfield><subfield code="h">643-651</subfield></datafield></record></collection>
|
author |
Shao, Wenyi |
spellingShingle |
Shao, Wenyi ddc 530 bkl 33.00 misc Quantum entanglement misc Berry phase misc GHZ state Entanglement and Berry Phase in a Parameterized Three-Qubit System |
authorStr |
Shao, Wenyi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546097 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7748 |
topic_title |
530 VZ 33.00 bkl Entanglement and Berry Phase in a Parameterized Three-Qubit System Quantum entanglement Berry phase GHZ state |
topic |
ddc 530 bkl 33.00 misc Quantum entanglement misc Berry phase misc GHZ state |
topic_unstemmed |
ddc 530 bkl 33.00 misc Quantum entanglement misc Berry phase misc GHZ state |
topic_browse |
ddc 530 bkl 33.00 misc Quantum entanglement misc Berry phase misc GHZ state |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of theoretical physics |
hierarchy_parent_id |
129546097 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of theoretical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 |
title |
Entanglement and Berry Phase in a Parameterized Three-Qubit System |
ctrlnum |
(DE-627)OLC2052400710 (DE-He213)s10773-016-3206-5-p |
title_full |
Entanglement and Berry Phase in a Parameterized Three-Qubit System |
author_sort |
Shao, Wenyi |
journal |
International journal of theoretical physics |
journalStr |
International journal of theoretical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
643 |
author_browse |
Shao, Wenyi Du, Yangyang Yang, Qi Wang, Gangcheng Sun, Chunfang Xue, Kang |
container_volume |
56 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Shao, Wenyi |
doi_str_mv |
10.1007/s10773-016-3206-5 |
dewey-full |
530 |
title_sort |
entanglement and berry phase in a parameterized three-qubit system |
title_auth |
Entanglement and Berry Phase in a Parameterized Three-Qubit System |
abstract |
Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
3 |
title_short |
Entanglement and Berry Phase in a Parameterized Three-Qubit System |
url |
https://doi.org/10.1007/s10773-016-3206-5 |
remote_bool |
false |
author2 |
Du, Yangyang Yang, Qi Wang, Gangcheng Sun, Chunfang Xue, Kang |
author2Str |
Du, Yangyang Yang, Qi Wang, Gangcheng Sun, Chunfang Xue, Kang |
ppnlink |
129546097 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10773-016-3206-5 |
up_date |
2024-07-03T14:56:04.176Z |
_version_ |
1803570185951510528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052400710</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503085122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-016-3206-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052400710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-016-3206-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Wenyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Entanglement and Berry Phase in a Parameterized Three-Qubit System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we construct a parameterized form of unitary $\breve {R}_{123}(\theta _{1},\theta _{2},\varphi )$ matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃1 and 𝜃2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃1 = 𝜃2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum entanglement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Berry phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GHZ state</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Yangyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gangcheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Chunfang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">56(2016), 3 vom: 07. Dez., Seite 643-651</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:643-651</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-016-3206-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">12</subfield><subfield code="h">643-651</subfield></datafield></record></collection>
|
score |
7.4022093 |