Image auto-annotation with automatic selection of the annotation length
Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search en...
Ausführliche Beschreibung
Autor*in: |
Maier, Oskar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent information systems - Springer US, 1992, 39(2012), 3 vom: 26. Mai, Seite 651-685 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2012 ; number:3 ; day:26 ; month:05 ; pages:651-685 |
Links: |
---|
DOI / URN: |
10.1007/s10844-012-0207-6 |
---|
Katalog-ID: |
OLC2052418229 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052418229 | ||
003 | DE-627 | ||
005 | 20230503115437.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10844-012-0207-6 |2 doi | |
035 | |a (DE-627)OLC2052418229 | ||
035 | |a (DE-He213)s10844-012-0207-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 020 |a 004 |q VZ |
084 | |a 24,1 |2 ssgn | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Maier, Oskar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Image auto-annotation with automatic selection of the annotation length |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2012 | ||
520 | |a Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. | ||
650 | 4 | |a Image auto-annotation | |
650 | 4 | |a Variable annotation length | |
650 | 4 | |a Parameter optimization | |
650 | 4 | |a Image similarity | |
700 | 1 | |a Kwasnicka, Halina |4 aut | |
700 | 1 | |a Stanek, Michal |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent information systems |d Springer US, 1992 |g 39(2012), 3 vom: 26. Mai, Seite 651-685 |w (DE-627)171028333 |w (DE-600)1141899-0 |w (DE-576)03304032X |x 0925-9902 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2012 |g number:3 |g day:26 |g month:05 |g pages:651-685 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10844-012-0207-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4012 | ||
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 39 |j 2012 |e 3 |b 26 |c 05 |h 651-685 |
author_variant |
o m om h k hk m s ms |
---|---|
matchkey_str |
article:09259902:2012----::mgatanttowtatmtceetoot |
hierarchy_sort_str |
2012 |
bklnumber |
54.00 |
publishDate |
2012 |
allfields |
10.1007/s10844-012-0207-6 doi (DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn 54.00 bkl Maier, Oskar verfasserin aut Image auto-annotation with automatic selection of the annotation length 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2012 Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. Image auto-annotation Variable annotation length Parameter optimization Image similarity Kwasnicka, Halina aut Stanek, Michal aut Enthalten in Journal of intelligent information systems Springer US, 1992 39(2012), 3 vom: 26. Mai, Seite 651-685 (DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X 0925-9902 nnns volume:39 year:2012 number:3 day:26 month:05 pages:651-685 https://doi.org/10.1007/s10844-012-0207-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 54.00 VZ AR 39 2012 3 26 05 651-685 |
spelling |
10.1007/s10844-012-0207-6 doi (DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn 54.00 bkl Maier, Oskar verfasserin aut Image auto-annotation with automatic selection of the annotation length 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2012 Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. Image auto-annotation Variable annotation length Parameter optimization Image similarity Kwasnicka, Halina aut Stanek, Michal aut Enthalten in Journal of intelligent information systems Springer US, 1992 39(2012), 3 vom: 26. Mai, Seite 651-685 (DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X 0925-9902 nnns volume:39 year:2012 number:3 day:26 month:05 pages:651-685 https://doi.org/10.1007/s10844-012-0207-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 54.00 VZ AR 39 2012 3 26 05 651-685 |
allfields_unstemmed |
10.1007/s10844-012-0207-6 doi (DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn 54.00 bkl Maier, Oskar verfasserin aut Image auto-annotation with automatic selection of the annotation length 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2012 Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. Image auto-annotation Variable annotation length Parameter optimization Image similarity Kwasnicka, Halina aut Stanek, Michal aut Enthalten in Journal of intelligent information systems Springer US, 1992 39(2012), 3 vom: 26. Mai, Seite 651-685 (DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X 0925-9902 nnns volume:39 year:2012 number:3 day:26 month:05 pages:651-685 https://doi.org/10.1007/s10844-012-0207-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 54.00 VZ AR 39 2012 3 26 05 651-685 |
allfieldsGer |
10.1007/s10844-012-0207-6 doi (DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn 54.00 bkl Maier, Oskar verfasserin aut Image auto-annotation with automatic selection of the annotation length 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2012 Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. Image auto-annotation Variable annotation length Parameter optimization Image similarity Kwasnicka, Halina aut Stanek, Michal aut Enthalten in Journal of intelligent information systems Springer US, 1992 39(2012), 3 vom: 26. Mai, Seite 651-685 (DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X 0925-9902 nnns volume:39 year:2012 number:3 day:26 month:05 pages:651-685 https://doi.org/10.1007/s10844-012-0207-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 54.00 VZ AR 39 2012 3 26 05 651-685 |
allfieldsSound |
10.1007/s10844-012-0207-6 doi (DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn 54.00 bkl Maier, Oskar verfasserin aut Image auto-annotation with automatic selection of the annotation length 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2012 Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. Image auto-annotation Variable annotation length Parameter optimization Image similarity Kwasnicka, Halina aut Stanek, Michal aut Enthalten in Journal of intelligent information systems Springer US, 1992 39(2012), 3 vom: 26. Mai, Seite 651-685 (DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X 0925-9902 nnns volume:39 year:2012 number:3 day:26 month:05 pages:651-685 https://doi.org/10.1007/s10844-012-0207-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 54.00 VZ AR 39 2012 3 26 05 651-685 |
language |
English |
source |
Enthalten in Journal of intelligent information systems 39(2012), 3 vom: 26. Mai, Seite 651-685 volume:39 year:2012 number:3 day:26 month:05 pages:651-685 |
sourceStr |
Enthalten in Journal of intelligent information systems 39(2012), 3 vom: 26. Mai, Seite 651-685 volume:39 year:2012 number:3 day:26 month:05 pages:651-685 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image auto-annotation Variable annotation length Parameter optimization Image similarity |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent information systems |
authorswithroles_txt_mv |
Maier, Oskar @@aut@@ Kwasnicka, Halina @@aut@@ Stanek, Michal @@aut@@ |
publishDateDaySort_date |
2012-05-26T00:00:00Z |
hierarchy_top_id |
171028333 |
dewey-sort |
270 |
id |
OLC2052418229 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052418229</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115437.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10844-012-0207-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052418229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10844-012-0207-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">020</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maier, Oskar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image auto-annotation with automatic selection of the annotation length</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image auto-annotation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable annotation length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image similarity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwasnicka, Halina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Michal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent information systems</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">39(2012), 3 vom: 26. Mai, Seite 651-685</subfield><subfield code="w">(DE-627)171028333</subfield><subfield code="w">(DE-600)1141899-0</subfield><subfield code="w">(DE-576)03304032X</subfield><subfield code="x">0925-9902</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:26</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:651-685</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10844-012-0207-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">26</subfield><subfield code="c">05</subfield><subfield code="h">651-685</subfield></datafield></record></collection>
|
author |
Maier, Oskar |
spellingShingle |
Maier, Oskar ddc 070 ssgn 24,1 bkl 54.00 misc Image auto-annotation misc Variable annotation length misc Parameter optimization misc Image similarity Image auto-annotation with automatic selection of the annotation length |
authorStr |
Maier, Oskar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171028333 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 020 - Library & information sciences 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-9902 |
topic_title |
070 020 004 VZ 24,1 ssgn 54.00 bkl Image auto-annotation with automatic selection of the annotation length Image auto-annotation Variable annotation length Parameter optimization Image similarity |
topic |
ddc 070 ssgn 24,1 bkl 54.00 misc Image auto-annotation misc Variable annotation length misc Parameter optimization misc Image similarity |
topic_unstemmed |
ddc 070 ssgn 24,1 bkl 54.00 misc Image auto-annotation misc Variable annotation length misc Parameter optimization misc Image similarity |
topic_browse |
ddc 070 ssgn 24,1 bkl 54.00 misc Image auto-annotation misc Variable annotation length misc Parameter optimization misc Image similarity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of intelligent information systems |
hierarchy_parent_id |
171028333 |
dewey-tens |
070 - News media, journalism & publishing 020 - Library & information sciences 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent information systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171028333 (DE-600)1141899-0 (DE-576)03304032X |
title |
Image auto-annotation with automatic selection of the annotation length |
ctrlnum |
(DE-627)OLC2052418229 (DE-He213)s10844-012-0207-6-p |
title_full |
Image auto-annotation with automatic selection of the annotation length |
author_sort |
Maier, Oskar |
journal |
Journal of intelligent information systems |
journalStr |
Journal of intelligent information systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
651 |
author_browse |
Maier, Oskar Kwasnicka, Halina Stanek, Michal |
container_volume |
39 |
class |
070 020 004 VZ 24,1 ssgn 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Maier, Oskar |
doi_str_mv |
10.1007/s10844-012-0207-6 |
dewey-full |
070 020 004 |
title_sort |
image auto-annotation with automatic selection of the annotation length |
title_auth |
Image auto-annotation with automatic selection of the annotation length |
abstract |
Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. © The Author(s) 2012 |
abstractGer |
Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. © The Author(s) 2012 |
abstract_unstemmed |
Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods. © The Author(s) 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_32 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2244 GBV_ILN_4012 |
container_issue |
3 |
title_short |
Image auto-annotation with automatic selection of the annotation length |
url |
https://doi.org/10.1007/s10844-012-0207-6 |
remote_bool |
false |
author2 |
Kwasnicka, Halina Stanek, Michal |
author2Str |
Kwasnicka, Halina Stanek, Michal |
ppnlink |
171028333 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10844-012-0207-6 |
up_date |
2024-07-03T15:00:06.854Z |
_version_ |
1803570440419934208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052418229</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503115437.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10844-012-0207-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052418229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10844-012-0207-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">020</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maier, Oskar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image auto-annotation with automatic selection of the annotation length</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Developing a satisfactory and effective method for auto-annotating images that works under general conditions is a challenging task. The advantages of such a system would be manifold: it can be used to annotate existing, large databases of images, rendering them accessible to text search engines; or it can be used as core for image retrieval based on a query image’s visual content. Manual annotation of images is a difficult, tedious and time consuming task. Furthermore, manual annotations tend to show great inter-person variance: considering an image, the opinions about what elements are significant and deserve an annotation vary strongly. The latter poses a problem for the evaluation of an automatic method, as an annotation’s correctness is greatly subjective. In this paper we present an automatic method for annotating images, which addresses one of the existing methods’ major limitation, namely a fixed annotation length. The proposed method, PATSI, automatically chooses the resulting annotation’s length for each query image. It is held as simple as possible and a build-in parameter optimization procedure renders PATSI de-facto parameter free. Finally, PATSI is evaluated on standard datasets, outperforming various state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image auto-annotation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable annotation length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image similarity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwasnicka, Halina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanek, Michal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent information systems</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">39(2012), 3 vom: 26. Mai, Seite 651-685</subfield><subfield code="w">(DE-627)171028333</subfield><subfield code="w">(DE-600)1141899-0</subfield><subfield code="w">(DE-576)03304032X</subfield><subfield code="x">0925-9902</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:26</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:651-685</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10844-012-0207-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">26</subfield><subfield code="c">05</subfield><subfield code="h">651-685</subfield></datafield></record></collection>
|
score |
7.4008913 |