Digital filters for firing rate estimation
Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and de...
Ausführliche Beschreibung
Autor*in: |
Paulin, Michael G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Biological cybernetics - Springer-Verlag, 1975, 66(1992), 6 vom: Apr., Seite 525-531 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:1992 ; number:6 ; month:04 ; pages:525-531 |
Links: |
---|
DOI / URN: |
10.1007/BF00204117 |
---|
Katalog-ID: |
OLC2052692711 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2052692711 | ||
003 | DE-627 | ||
005 | 20230513153058.0 | ||
007 | tu | ||
008 | 200819s1992 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00204117 |2 doi | |
035 | |a (DE-627)OLC2052692711 | ||
035 | |a (DE-He213)BF00204117-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
082 | 0 | 4 | |a 570 |a 000 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Paulin, Michael G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Digital filters for firing rate estimation |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1992 | ||
520 | |a Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. | ||
650 | 4 | |a Estimate Algorithm | |
650 | 4 | |a Firing Rate | |
650 | 4 | |a Neural Activity | |
650 | 4 | |a Rate Estimate | |
650 | 4 | |a Spike Train | |
773 | 0 | 8 | |i Enthalten in |t Biological cybernetics |d Springer-Verlag, 1975 |g 66(1992), 6 vom: Apr., Seite 525-531 |w (DE-627)129556351 |w (DE-600)220699-7 |w (DE-576)015013545 |x 0340-1200 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:1992 |g number:6 |g month:04 |g pages:525-531 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00204117 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_259 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2237 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_2410 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 66 |j 1992 |e 6 |c 04 |h 525-531 |
author_variant |
m g p mg mgp |
---|---|
matchkey_str |
article:03401200:1992----::iiaflesofrnrt |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1007/BF00204117 doi (DE-627)OLC2052692711 (DE-He213)BF00204117-p DE-627 ger DE-627 rakwb eng 570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Paulin, Michael G. verfasserin aut Digital filters for firing rate estimation 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1992 Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train Enthalten in Biological cybernetics Springer-Verlag, 1975 66(1992), 6 vom: Apr., Seite 525-531 (DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 0340-1200 nnns volume:66 year:1992 number:6 month:04 pages:525-531 https://doi.org/10.1007/BF00204117 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 AR 66 1992 6 04 525-531 |
spelling |
10.1007/BF00204117 doi (DE-627)OLC2052692711 (DE-He213)BF00204117-p DE-627 ger DE-627 rakwb eng 570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Paulin, Michael G. verfasserin aut Digital filters for firing rate estimation 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1992 Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train Enthalten in Biological cybernetics Springer-Verlag, 1975 66(1992), 6 vom: Apr., Seite 525-531 (DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 0340-1200 nnns volume:66 year:1992 number:6 month:04 pages:525-531 https://doi.org/10.1007/BF00204117 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 AR 66 1992 6 04 525-531 |
allfields_unstemmed |
10.1007/BF00204117 doi (DE-627)OLC2052692711 (DE-He213)BF00204117-p DE-627 ger DE-627 rakwb eng 570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Paulin, Michael G. verfasserin aut Digital filters for firing rate estimation 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1992 Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train Enthalten in Biological cybernetics Springer-Verlag, 1975 66(1992), 6 vom: Apr., Seite 525-531 (DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 0340-1200 nnns volume:66 year:1992 number:6 month:04 pages:525-531 https://doi.org/10.1007/BF00204117 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 AR 66 1992 6 04 525-531 |
allfieldsGer |
10.1007/BF00204117 doi (DE-627)OLC2052692711 (DE-He213)BF00204117-p DE-627 ger DE-627 rakwb eng 570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Paulin, Michael G. verfasserin aut Digital filters for firing rate estimation 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1992 Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train Enthalten in Biological cybernetics Springer-Verlag, 1975 66(1992), 6 vom: Apr., Seite 525-531 (DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 0340-1200 nnns volume:66 year:1992 number:6 month:04 pages:525-531 https://doi.org/10.1007/BF00204117 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 AR 66 1992 6 04 525-531 |
allfieldsSound |
10.1007/BF00204117 doi (DE-627)OLC2052692711 (DE-He213)BF00204117-p DE-627 ger DE-627 rakwb eng 570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Paulin, Michael G. verfasserin aut Digital filters for firing rate estimation 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1992 Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train Enthalten in Biological cybernetics Springer-Verlag, 1975 66(1992), 6 vom: Apr., Seite 525-531 (DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 0340-1200 nnns volume:66 year:1992 number:6 month:04 pages:525-531 https://doi.org/10.1007/BF00204117 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 AR 66 1992 6 04 525-531 |
language |
English |
source |
Enthalten in Biological cybernetics 66(1992), 6 vom: Apr., Seite 525-531 volume:66 year:1992 number:6 month:04 pages:525-531 |
sourceStr |
Enthalten in Biological cybernetics 66(1992), 6 vom: Apr., Seite 525-531 volume:66 year:1992 number:6 month:04 pages:525-531 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Biological cybernetics |
authorswithroles_txt_mv |
Paulin, Michael G. @@aut@@ |
publishDateDaySort_date |
1992-04-01T00:00:00Z |
hierarchy_top_id |
129556351 |
dewey-sort |
3570 |
id |
OLC2052692711 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052692711</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230513153058.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00204117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052692711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00204117-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paulin, Michael G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital filters for firing rate estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimate Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firing Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate Estimate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spike Train</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biological cybernetics</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">66(1992), 6 vom: Apr., Seite 525-531</subfield><subfield code="w">(DE-627)129556351</subfield><subfield code="w">(DE-600)220699-7</subfield><subfield code="w">(DE-576)015013545</subfield><subfield code="x">0340-1200</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:6</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:525-531</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00204117</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_259</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2237</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">1992</subfield><subfield code="e">6</subfield><subfield code="c">04</subfield><subfield code="h">525-531</subfield></datafield></record></collection>
|
author |
Paulin, Michael G. |
spellingShingle |
Paulin, Michael G. ddc 570 ssgn 12 fid BIODIV misc Estimate Algorithm misc Firing Rate misc Neural Activity misc Rate Estimate misc Spike Train Digital filters for firing rate estimation |
authorStr |
Paulin, Michael G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129556351 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0340-1200 |
topic_title |
570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid Digital filters for firing rate estimation Estimate Algorithm Firing Rate Neural Activity Rate Estimate Spike Train |
topic |
ddc 570 ssgn 12 fid BIODIV misc Estimate Algorithm misc Firing Rate misc Neural Activity misc Rate Estimate misc Spike Train |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV misc Estimate Algorithm misc Firing Rate misc Neural Activity misc Rate Estimate misc Spike Train |
topic_browse |
ddc 570 ssgn 12 fid BIODIV misc Estimate Algorithm misc Firing Rate misc Neural Activity misc Rate Estimate misc Spike Train |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Biological cybernetics |
hierarchy_parent_id |
129556351 |
dewey-tens |
570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Biological cybernetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129556351 (DE-600)220699-7 (DE-576)015013545 |
title |
Digital filters for firing rate estimation |
ctrlnum |
(DE-627)OLC2052692711 (DE-He213)BF00204117-p |
title_full |
Digital filters for firing rate estimation |
author_sort |
Paulin, Michael G. |
journal |
Biological cybernetics |
journalStr |
Biological cybernetics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
525 |
author_browse |
Paulin, Michael G. |
container_volume |
66 |
class |
570 VZ 570 000 VZ 12 ssgn BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Paulin, Michael G. |
doi_str_mv |
10.1007/BF00204117 |
dewey-full |
570 000 |
title_sort |
digital filters for firing rate estimation |
title_auth |
Digital filters for firing rate estimation |
abstract |
Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. © Springer-Verlag 1992 |
abstractGer |
Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. © Springer-Verlag 1992 |
abstract_unstemmed |
Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram. © Springer-Verlag 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_101 GBV_ILN_105 GBV_ILN_259 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2088 GBV_ILN_2237 GBV_ILN_2409 GBV_ILN_2410 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4302 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4318 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Digital filters for firing rate estimation |
url |
https://doi.org/10.1007/BF00204117 |
remote_bool |
false |
ppnlink |
129556351 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00204117 |
up_date |
2024-07-03T16:09:07.216Z |
_version_ |
1803574781903110146 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2052692711</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230513153058.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00204117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2052692711</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00204117-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paulin, Michael G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital filters for firing rate estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When a rate histogram is used to represent the firing pattern of a neuron there is the potential for serious error due to aliasing, and because of this the rate histogram is a very poor way to represent neural activity. It is theoretically possible to encode a signal in a spike train and decode it without error by filtering and sampling. There is no natural optimal filter design for this problem, but it is possible to specify the characteristics of a good rate estimating filter heuristically and design a filter with these characteristics. Two rate estimating filters are described here. Their performance has been tested, and compared to the rate histogram and the French-Holden rate estimating algorithm, by measuring their ability to recover signals encoded as impulse sequences by Integral Pulse Frequency Modulation (IPFM). These filters are simple to implement and perform well. They should be used in preference to the rate histogram.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimate Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firing Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate Estimate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spike Train</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biological cybernetics</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">66(1992), 6 vom: Apr., Seite 525-531</subfield><subfield code="w">(DE-627)129556351</subfield><subfield code="w">(DE-600)220699-7</subfield><subfield code="w">(DE-576)015013545</subfield><subfield code="x">0340-1200</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:6</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:525-531</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00204117</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_259</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2237</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">1992</subfield><subfield code="e">6</subfield><subfield code="c">04</subfield><subfield code="h">525-531</subfield></datafield></record></collection>
|
score |
7.3993473 |