Landslide displacement prediction based on combining method with optimal weight
Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evo...
Ausführliche Beschreibung
Autor*in: |
Li, Xiuzhen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Natural hazards - Springer Netherlands, 1988, 61(2011), 2 vom: 02. Dez., Seite 635-646 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2011 ; number:2 ; day:02 ; month:12 ; pages:635-646 |
Links: |
---|
DOI / URN: |
10.1007/s11069-011-0051-y |
---|
Katalog-ID: |
OLC2053652497 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2053652497 | ||
003 | DE-627 | ||
005 | 20230503220842.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11069-011-0051-y |2 doi | |
035 | |a (DE-627)OLC2053652497 | ||
035 | |a (DE-He213)s11069-011-0051-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
100 | 1 | |a Li, Xiuzhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Landslide displacement prediction based on combining method with optimal weight |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2011 | ||
520 | |a Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. | ||
650 | 4 | |a Landslide | |
650 | 4 | |a Displacement prediction | |
650 | 4 | |a Combining method with optimal weight | |
650 | 4 | |a GM(1,1) model | |
650 | 4 | |a Verhulst model | |
700 | 1 | |a Kong, Jiming |4 aut | |
700 | 1 | |a Wang, Zhenyu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Natural hazards |d Springer Netherlands, 1988 |g 61(2011), 2 vom: 02. Dez., Seite 635-646 |w (DE-627)131010271 |w (DE-600)1088547-X |w (DE-576)03285272X |x 0921-030X |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2011 |g number:2 |g day:02 |g month:12 |g pages:635-646 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11069-011-0051-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 61 |j 2011 |e 2 |b 02 |c 12 |h 635-646 |
author_variant |
x l xl j k jk z w zw |
---|---|
matchkey_str |
article:0921030X:2011----::adlddslcmnpeitobsdnobnnmt |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11069-011-0051-y doi (DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Li, Xiuzhen verfasserin aut Landslide displacement prediction based on combining method with optimal weight 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model Kong, Jiming aut Wang, Zhenyu aut Enthalten in Natural hazards Springer Netherlands, 1988 61(2011), 2 vom: 02. Dez., Seite 635-646 (DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X 0921-030X nnns volume:61 year:2011 number:2 day:02 month:12 pages:635-646 https://doi.org/10.1007/s11069-011-0051-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 61 2011 2 02 12 635-646 |
spelling |
10.1007/s11069-011-0051-y doi (DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Li, Xiuzhen verfasserin aut Landslide displacement prediction based on combining method with optimal weight 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model Kong, Jiming aut Wang, Zhenyu aut Enthalten in Natural hazards Springer Netherlands, 1988 61(2011), 2 vom: 02. Dez., Seite 635-646 (DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X 0921-030X nnns volume:61 year:2011 number:2 day:02 month:12 pages:635-646 https://doi.org/10.1007/s11069-011-0051-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 61 2011 2 02 12 635-646 |
allfields_unstemmed |
10.1007/s11069-011-0051-y doi (DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Li, Xiuzhen verfasserin aut Landslide displacement prediction based on combining method with optimal weight 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model Kong, Jiming aut Wang, Zhenyu aut Enthalten in Natural hazards Springer Netherlands, 1988 61(2011), 2 vom: 02. Dez., Seite 635-646 (DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X 0921-030X nnns volume:61 year:2011 number:2 day:02 month:12 pages:635-646 https://doi.org/10.1007/s11069-011-0051-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 61 2011 2 02 12 635-646 |
allfieldsGer |
10.1007/s11069-011-0051-y doi (DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Li, Xiuzhen verfasserin aut Landslide displacement prediction based on combining method with optimal weight 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model Kong, Jiming aut Wang, Zhenyu aut Enthalten in Natural hazards Springer Netherlands, 1988 61(2011), 2 vom: 02. Dez., Seite 635-646 (DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X 0921-030X nnns volume:61 year:2011 number:2 day:02 month:12 pages:635-646 https://doi.org/10.1007/s11069-011-0051-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 61 2011 2 02 12 635-646 |
allfieldsSound |
10.1007/s11069-011-0051-y doi (DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Li, Xiuzhen verfasserin aut Landslide displacement prediction based on combining method with optimal weight 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model Kong, Jiming aut Wang, Zhenyu aut Enthalten in Natural hazards Springer Netherlands, 1988 61(2011), 2 vom: 02. Dez., Seite 635-646 (DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X 0921-030X nnns volume:61 year:2011 number:2 day:02 month:12 pages:635-646 https://doi.org/10.1007/s11069-011-0051-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 61 2011 2 02 12 635-646 |
language |
English |
source |
Enthalten in Natural hazards 61(2011), 2 vom: 02. Dez., Seite 635-646 volume:61 year:2011 number:2 day:02 month:12 pages:635-646 |
sourceStr |
Enthalten in Natural hazards 61(2011), 2 vom: 02. Dez., Seite 635-646 volume:61 year:2011 number:2 day:02 month:12 pages:635-646 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Natural hazards |
authorswithroles_txt_mv |
Li, Xiuzhen @@aut@@ Kong, Jiming @@aut@@ Wang, Zhenyu @@aut@@ |
publishDateDaySort_date |
2011-12-02T00:00:00Z |
hierarchy_top_id |
131010271 |
dewey-sort |
3550 |
id |
OLC2053652497 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053652497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503220842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11069-011-0051-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053652497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11069-011-0051-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Landslide displacement prediction based on combining method with optimal weight</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combining method with optimal weight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GM(1,1) model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verhulst model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Jiming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhenyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural hazards</subfield><subfield code="d">Springer Netherlands, 1988</subfield><subfield code="g">61(2011), 2 vom: 02. Dez., Seite 635-646</subfield><subfield code="w">(DE-627)131010271</subfield><subfield code="w">(DE-600)1088547-X</subfield><subfield code="w">(DE-576)03285272X</subfield><subfield code="x">0921-030X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-646</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11069-011-0051-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">635-646</subfield></datafield></record></collection>
|
author |
Li, Xiuzhen |
spellingShingle |
Li, Xiuzhen ddc 550 ssgn 14 misc Landslide misc Displacement prediction misc Combining method with optimal weight misc GM(1,1) model misc Verhulst model Landslide displacement prediction based on combining method with optimal weight |
authorStr |
Li, Xiuzhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131010271 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0921-030X |
topic_title |
550 VZ 14 ssgn Landslide displacement prediction based on combining method with optimal weight Landslide Displacement prediction Combining method with optimal weight GM(1,1) model Verhulst model |
topic |
ddc 550 ssgn 14 misc Landslide misc Displacement prediction misc Combining method with optimal weight misc GM(1,1) model misc Verhulst model |
topic_unstemmed |
ddc 550 ssgn 14 misc Landslide misc Displacement prediction misc Combining method with optimal weight misc GM(1,1) model misc Verhulst model |
topic_browse |
ddc 550 ssgn 14 misc Landslide misc Displacement prediction misc Combining method with optimal weight misc GM(1,1) model misc Verhulst model |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Natural hazards |
hierarchy_parent_id |
131010271 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Natural hazards |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131010271 (DE-600)1088547-X (DE-576)03285272X |
title |
Landslide displacement prediction based on combining method with optimal weight |
ctrlnum |
(DE-627)OLC2053652497 (DE-He213)s11069-011-0051-y-p |
title_full |
Landslide displacement prediction based on combining method with optimal weight |
author_sort |
Li, Xiuzhen |
journal |
Natural hazards |
journalStr |
Natural hazards |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
635 |
author_browse |
Li, Xiuzhen Kong, Jiming Wang, Zhenyu |
container_volume |
61 |
class |
550 VZ 14 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Xiuzhen |
doi_str_mv |
10.1007/s11069-011-0051-y |
dewey-full |
550 |
title_sort |
landslide displacement prediction based on combining method with optimal weight |
title_auth |
Landslide displacement prediction based on combining method with optimal weight |
abstract |
Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. © Springer Science+Business Media B.V. 2011 |
abstractGer |
Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. © Springer Science+Business Media B.V. 2011 |
abstract_unstemmed |
Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction. © Springer Science+Business Media B.V. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-GGO SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 |
container_issue |
2 |
title_short |
Landslide displacement prediction based on combining method with optimal weight |
url |
https://doi.org/10.1007/s11069-011-0051-y |
remote_bool |
false |
author2 |
Kong, Jiming Wang, Zhenyu |
author2Str |
Kong, Jiming Wang, Zhenyu |
ppnlink |
131010271 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11069-011-0051-y |
up_date |
2024-07-03T20:01:46.582Z |
_version_ |
1803589419357175808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053652497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503220842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11069-011-0051-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053652497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11069-011-0051-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiuzhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Landslide displacement prediction based on combining method with optimal weight</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Predicting the deformation and evolution tendency of landslides is essential to landslide disaster prevention and mitigation. At present, most of the proposed models for landslide displacement prediction belong to single models. It is difficult to accurately describe the deformation and evolution law only by a single model for the complexity of landslides and limitation of the models. In this paper, we presented an application of linear combination model with optimal weight in landslide displacement prediction. We took Huanlongxicun and Saleshan landslides in Gansu province of China as examples, firstly to build GM(1,1) and Verhulst models for displacement prediction of the two landslides; then build two linear combination models of the two landslides, on the basis of the combining theory with optimal weight and the prediction results of the GM(1,1) and Verhulst models. The results show that the prediction accuracies of the combining models are much higher than those of the single models for both Huanglongxicun landslide and Saleshan landslide. Therefore, the combining model with optimal weight is an effective and feasible method to further improve accuracy for landslide displacement prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Displacement prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combining method with optimal weight</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GM(1,1) model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verhulst model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Jiming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhenyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural hazards</subfield><subfield code="d">Springer Netherlands, 1988</subfield><subfield code="g">61(2011), 2 vom: 02. Dez., Seite 635-646</subfield><subfield code="w">(DE-627)131010271</subfield><subfield code="w">(DE-600)1088547-X</subfield><subfield code="w">(DE-576)03285272X</subfield><subfield code="x">0921-030X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:635-646</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11069-011-0051-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">635-646</subfield></datafield></record></collection>
|
score |
7.401026 |