Research on Optimization of PageRank Algorithm Based on Transition Probability
Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link...
Ausführliche Beschreibung
Autor*in: |
Shi, Xi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Wireless personal communications - Springer US, 1994, 102(2018), 2 vom: 30. Jan., Seite 1171-1180 |
---|---|
Übergeordnetes Werk: |
volume:102 ; year:2018 ; number:2 ; day:30 ; month:01 ; pages:1171-1180 |
Links: |
---|
DOI / URN: |
10.1007/s11277-017-5173-4 |
---|
Katalog-ID: |
OLC205382090X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205382090X | ||
003 | DE-627 | ||
005 | 20230504080112.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11277-017-5173-4 |2 doi | |
035 | |a (DE-627)OLC205382090X | ||
035 | |a (DE-He213)s11277-017-5173-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Shi, Xi |e verfasserin |0 (orcid)0000-0002-7798-8817 |4 aut | |
245 | 1 | 0 | |a Research on Optimization of PageRank Algorithm Based on Transition Probability |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. | ||
650 | 4 | |a Transition probability | |
650 | 4 | |a PageRank algorithm | |
650 | 4 | |a Optimization | |
700 | 1 | |a Wei, Pengcheng |4 aut | |
700 | 1 | |a Zhou, Zhen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Wireless personal communications |d Springer US, 1994 |g 102(2018), 2 vom: 30. Jan., Seite 1171-1180 |w (DE-627)188950273 |w (DE-600)1287489-9 |w (DE-576)049958909 |x 0929-6212 |7 nnns |
773 | 1 | 8 | |g volume:102 |g year:2018 |g number:2 |g day:30 |g month:01 |g pages:1171-1180 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11277-017-5173-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 102 |j 2018 |e 2 |b 30 |c 01 |h 1171-1180 |
author_variant |
x s xs p w pw z z zz |
---|---|
matchkey_str |
article:09296212:2018----::eerhnpiiainfaeakloihbsdnr |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11277-017-5173-4 doi (DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p DE-627 ger DE-627 rakwb eng 620 VZ Shi, Xi verfasserin (orcid)0000-0002-7798-8817 aut Research on Optimization of PageRank Algorithm Based on Transition Probability 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. Transition probability PageRank algorithm Optimization Wei, Pengcheng aut Zhou, Zhen aut Enthalten in Wireless personal communications Springer US, 1994 102(2018), 2 vom: 30. Jan., Seite 1171-1180 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 https://doi.org/10.1007/s11277-017-5173-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 102 2018 2 30 01 1171-1180 |
spelling |
10.1007/s11277-017-5173-4 doi (DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p DE-627 ger DE-627 rakwb eng 620 VZ Shi, Xi verfasserin (orcid)0000-0002-7798-8817 aut Research on Optimization of PageRank Algorithm Based on Transition Probability 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. Transition probability PageRank algorithm Optimization Wei, Pengcheng aut Zhou, Zhen aut Enthalten in Wireless personal communications Springer US, 1994 102(2018), 2 vom: 30. Jan., Seite 1171-1180 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 https://doi.org/10.1007/s11277-017-5173-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 102 2018 2 30 01 1171-1180 |
allfields_unstemmed |
10.1007/s11277-017-5173-4 doi (DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p DE-627 ger DE-627 rakwb eng 620 VZ Shi, Xi verfasserin (orcid)0000-0002-7798-8817 aut Research on Optimization of PageRank Algorithm Based on Transition Probability 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. Transition probability PageRank algorithm Optimization Wei, Pengcheng aut Zhou, Zhen aut Enthalten in Wireless personal communications Springer US, 1994 102(2018), 2 vom: 30. Jan., Seite 1171-1180 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 https://doi.org/10.1007/s11277-017-5173-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 102 2018 2 30 01 1171-1180 |
allfieldsGer |
10.1007/s11277-017-5173-4 doi (DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p DE-627 ger DE-627 rakwb eng 620 VZ Shi, Xi verfasserin (orcid)0000-0002-7798-8817 aut Research on Optimization of PageRank Algorithm Based on Transition Probability 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. Transition probability PageRank algorithm Optimization Wei, Pengcheng aut Zhou, Zhen aut Enthalten in Wireless personal communications Springer US, 1994 102(2018), 2 vom: 30. Jan., Seite 1171-1180 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 https://doi.org/10.1007/s11277-017-5173-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 102 2018 2 30 01 1171-1180 |
allfieldsSound |
10.1007/s11277-017-5173-4 doi (DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p DE-627 ger DE-627 rakwb eng 620 VZ Shi, Xi verfasserin (orcid)0000-0002-7798-8817 aut Research on Optimization of PageRank Algorithm Based on Transition Probability 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. Transition probability PageRank algorithm Optimization Wei, Pengcheng aut Zhou, Zhen aut Enthalten in Wireless personal communications Springer US, 1994 102(2018), 2 vom: 30. Jan., Seite 1171-1180 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 https://doi.org/10.1007/s11277-017-5173-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 102 2018 2 30 01 1171-1180 |
language |
English |
source |
Enthalten in Wireless personal communications 102(2018), 2 vom: 30. Jan., Seite 1171-1180 volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 |
sourceStr |
Enthalten in Wireless personal communications 102(2018), 2 vom: 30. Jan., Seite 1171-1180 volume:102 year:2018 number:2 day:30 month:01 pages:1171-1180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transition probability PageRank algorithm Optimization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Wireless personal communications |
authorswithroles_txt_mv |
Shi, Xi @@aut@@ Wei, Pengcheng @@aut@@ Zhou, Zhen @@aut@@ |
publishDateDaySort_date |
2018-01-30T00:00:00Z |
hierarchy_top_id |
188950273 |
dewey-sort |
3620 |
id |
OLC205382090X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205382090X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080112.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-017-5173-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205382090X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-017-5173-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7798-8817</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Optimization of PageRank Algorithm Based on Transition Probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PageRank algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Pengcheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">102(2018), 2 vom: 30. Jan., Seite 1171-1180</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1171-1180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-017-5173-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">01</subfield><subfield code="h">1171-1180</subfield></datafield></record></collection>
|
author |
Shi, Xi |
spellingShingle |
Shi, Xi ddc 620 misc Transition probability misc PageRank algorithm misc Optimization Research on Optimization of PageRank Algorithm Based on Transition Probability |
authorStr |
Shi, Xi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)188950273 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0929-6212 |
topic_title |
620 VZ Research on Optimization of PageRank Algorithm Based on Transition Probability Transition probability PageRank algorithm Optimization |
topic |
ddc 620 misc Transition probability misc PageRank algorithm misc Optimization |
topic_unstemmed |
ddc 620 misc Transition probability misc PageRank algorithm misc Optimization |
topic_browse |
ddc 620 misc Transition probability misc PageRank algorithm misc Optimization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Wireless personal communications |
hierarchy_parent_id |
188950273 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Wireless personal communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 |
title |
Research on Optimization of PageRank Algorithm Based on Transition Probability |
ctrlnum |
(DE-627)OLC205382090X (DE-He213)s11277-017-5173-4-p |
title_full |
Research on Optimization of PageRank Algorithm Based on Transition Probability |
author_sort |
Shi, Xi |
journal |
Wireless personal communications |
journalStr |
Wireless personal communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1171 |
author_browse |
Shi, Xi Wei, Pengcheng Zhou, Zhen |
container_volume |
102 |
class |
620 VZ |
format_se |
Aufsätze |
author-letter |
Shi, Xi |
doi_str_mv |
10.1007/s11277-017-5173-4 |
normlink |
(ORCID)0000-0002-7798-8817 |
normlink_prefix_str_mv |
(orcid)0000-0002-7798-8817 |
dewey-full |
620 |
title_sort |
research on optimization of pagerank algorithm based on transition probability |
title_auth |
Research on Optimization of PageRank Algorithm Based on Transition Probability |
abstract |
Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 |
container_issue |
2 |
title_short |
Research on Optimization of PageRank Algorithm Based on Transition Probability |
url |
https://doi.org/10.1007/s11277-017-5173-4 |
remote_bool |
false |
author2 |
Wei, Pengcheng Zhou, Zhen |
author2Str |
Wei, Pengcheng Zhou, Zhen |
ppnlink |
188950273 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11277-017-5173-4 |
up_date |
2024-07-03T20:46:39.976Z |
_version_ |
1803592243587579904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205382090X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080112.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-017-5173-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205382090X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-017-5173-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7798-8817</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Optimization of PageRank Algorithm Based on Transition Probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the current era of information explosion, information search has become the focus of research, and search engines generally use PageRank algorithm to sort web-page. Based on the situation, this paper starts with rules of PageRank algorithm, and aims at optimizing PR value problem of link page average allocation. After that, this paper carries on discriminant analysis to the probability of web-page randomly jump to any page with the probability of residual damping coefficient, and assigns the PR value according to number of downstream pages linked to specified page, namely, improving accuracy of the algorithm by optimizing transition probability matrix in the PageRank algorithm. Finally, we prove that optimized algorithm has improved accuracy of PageRank distribution, and is superior to traditional algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PageRank algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Pengcheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">102(2018), 2 vom: 30. Jan., Seite 1171-1180</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1171-1180</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-017-5173-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">01</subfield><subfield code="h">1171-1180</subfield></datafield></record></collection>
|
score |
7.402237 |