A Novel Web Image Retrieval Method
Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introd...
Ausführliche Beschreibung
Autor*in: |
Li, Wenjin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Wireless personal communications - Springer US, 1994, 103(2018), 2 vom: 18. Jan., Seite 1153-1160 |
---|---|
Übergeordnetes Werk: |
volume:103 ; year:2018 ; number:2 ; day:18 ; month:01 ; pages:1153-1160 |
Links: |
---|
DOI / URN: |
10.1007/s11277-018-5283-7 |
---|
Katalog-ID: |
OLC205382347X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205382347X | ||
003 | DE-627 | ||
005 | 20230504080134.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11277-018-5283-7 |2 doi | |
035 | |a (DE-627)OLC205382347X | ||
035 | |a (DE-He213)s11277-018-5283-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Li, Wenjin |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Novel Web Image Retrieval Method |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. | ||
650 | 4 | |a Image processing | |
650 | 4 | |a Image retrieval | |
650 | 4 | |a Web search | |
650 | 4 | |a Web crawler | |
650 | 4 | |a Feature extraction | |
650 | 4 | |a Pseudo-Zernike moment | |
773 | 0 | 8 | |i Enthalten in |t Wireless personal communications |d Springer US, 1994 |g 103(2018), 2 vom: 18. Jan., Seite 1153-1160 |w (DE-627)188950273 |w (DE-600)1287489-9 |w (DE-576)049958909 |x 0929-6212 |7 nnns |
773 | 1 | 8 | |g volume:103 |g year:2018 |g number:2 |g day:18 |g month:01 |g pages:1153-1160 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11277-018-5283-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 103 |j 2018 |e 2 |b 18 |c 01 |h 1153-1160 |
author_variant |
w l wl |
---|---|
matchkey_str |
article:09296212:2018----::nvleiaeere |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11277-018-5283-7 doi (DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p DE-627 ger DE-627 rakwb eng 620 VZ Li, Wenjin verfasserin aut A Novel Web Image Retrieval Method 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment Enthalten in Wireless personal communications Springer US, 1994 103(2018), 2 vom: 18. Jan., Seite 1153-1160 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 https://doi.org/10.1007/s11277-018-5283-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 103 2018 2 18 01 1153-1160 |
spelling |
10.1007/s11277-018-5283-7 doi (DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p DE-627 ger DE-627 rakwb eng 620 VZ Li, Wenjin verfasserin aut A Novel Web Image Retrieval Method 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment Enthalten in Wireless personal communications Springer US, 1994 103(2018), 2 vom: 18. Jan., Seite 1153-1160 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 https://doi.org/10.1007/s11277-018-5283-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 103 2018 2 18 01 1153-1160 |
allfields_unstemmed |
10.1007/s11277-018-5283-7 doi (DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p DE-627 ger DE-627 rakwb eng 620 VZ Li, Wenjin verfasserin aut A Novel Web Image Retrieval Method 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment Enthalten in Wireless personal communications Springer US, 1994 103(2018), 2 vom: 18. Jan., Seite 1153-1160 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 https://doi.org/10.1007/s11277-018-5283-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 103 2018 2 18 01 1153-1160 |
allfieldsGer |
10.1007/s11277-018-5283-7 doi (DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p DE-627 ger DE-627 rakwb eng 620 VZ Li, Wenjin verfasserin aut A Novel Web Image Retrieval Method 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment Enthalten in Wireless personal communications Springer US, 1994 103(2018), 2 vom: 18. Jan., Seite 1153-1160 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 https://doi.org/10.1007/s11277-018-5283-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 103 2018 2 18 01 1153-1160 |
allfieldsSound |
10.1007/s11277-018-5283-7 doi (DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p DE-627 ger DE-627 rakwb eng 620 VZ Li, Wenjin verfasserin aut A Novel Web Image Retrieval Method 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment Enthalten in Wireless personal communications Springer US, 1994 103(2018), 2 vom: 18. Jan., Seite 1153-1160 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 https://doi.org/10.1007/s11277-018-5283-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 103 2018 2 18 01 1153-1160 |
language |
English |
source |
Enthalten in Wireless personal communications 103(2018), 2 vom: 18. Jan., Seite 1153-1160 volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 |
sourceStr |
Enthalten in Wireless personal communications 103(2018), 2 vom: 18. Jan., Seite 1153-1160 volume:103 year:2018 number:2 day:18 month:01 pages:1153-1160 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Wireless personal communications |
authorswithroles_txt_mv |
Li, Wenjin @@aut@@ |
publishDateDaySort_date |
2018-01-18T00:00:00Z |
hierarchy_top_id |
188950273 |
dewey-sort |
3620 |
id |
OLC205382347X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205382347X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080134.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-018-5283-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205382347X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-018-5283-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Wenjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Novel Web Image Retrieval Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web crawler</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-Zernike moment</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">103(2018), 2 vom: 18. Jan., Seite 1153-1160</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1153-1160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-018-5283-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">1153-1160</subfield></datafield></record></collection>
|
author |
Li, Wenjin |
spellingShingle |
Li, Wenjin ddc 620 misc Image processing misc Image retrieval misc Web search misc Web crawler misc Feature extraction misc Pseudo-Zernike moment A Novel Web Image Retrieval Method |
authorStr |
Li, Wenjin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)188950273 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0929-6212 |
topic_title |
620 VZ A Novel Web Image Retrieval Method Image processing Image retrieval Web search Web crawler Feature extraction Pseudo-Zernike moment |
topic |
ddc 620 misc Image processing misc Image retrieval misc Web search misc Web crawler misc Feature extraction misc Pseudo-Zernike moment |
topic_unstemmed |
ddc 620 misc Image processing misc Image retrieval misc Web search misc Web crawler misc Feature extraction misc Pseudo-Zernike moment |
topic_browse |
ddc 620 misc Image processing misc Image retrieval misc Web search misc Web crawler misc Feature extraction misc Pseudo-Zernike moment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Wireless personal communications |
hierarchy_parent_id |
188950273 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Wireless personal communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 |
title |
A Novel Web Image Retrieval Method |
ctrlnum |
(DE-627)OLC205382347X (DE-He213)s11277-018-5283-7-p |
title_full |
A Novel Web Image Retrieval Method |
author_sort |
Li, Wenjin |
journal |
Wireless personal communications |
journalStr |
Wireless personal communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1153 |
author_browse |
Li, Wenjin |
container_volume |
103 |
class |
620 VZ |
format_se |
Aufsätze |
author-letter |
Li, Wenjin |
doi_str_mv |
10.1007/s11277-018-5283-7 |
dewey-full |
620 |
title_sort |
a novel web image retrieval method |
title_auth |
A Novel Web Image Retrieval Method |
abstract |
Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 |
container_issue |
2 |
title_short |
A Novel Web Image Retrieval Method |
url |
https://doi.org/10.1007/s11277-018-5283-7 |
remote_bool |
false |
ppnlink |
188950273 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11277-018-5283-7 |
up_date |
2024-07-03T20:47:20.391Z |
_version_ |
1803592285963681792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205382347X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080134.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-018-5283-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205382347X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-018-5283-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Wenjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Novel Web Image Retrieval Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Traditional image retrieval methods, make use of color, shape and texture features, are based on local image database. But in the condition of which much more images are available on the internet, so big an image database includes various types of image information. In this paper, we introduce an intellectualized image retrieval method based on internet, which can grasp images on Internet automatically using web crawler and build the feature vector in local host. The method involves three parts: the capture-node, the manage-node, and the calculate-node. The calculate-node has two functions: feature extract and similarity measurement. According to the results of our experiments, we found the proposed method is simple to realization and has higher processing speed and accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web crawler</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pseudo-Zernike moment</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">103(2018), 2 vom: 18. Jan., Seite 1153-1160</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1153-1160</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-018-5283-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">1153-1160</subfield></datafield></record></collection>
|
score |
7.400943 |