Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter
Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease t...
Ausführliche Beschreibung
Autor*in: |
Khalil, Mohamad [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Wireless personal communications - Springer US, 1994, 107(2019), 1 vom: 18. März, Seite 283-290 |
---|---|
Übergeordnetes Werk: |
volume:107 ; year:2019 ; number:1 ; day:18 ; month:03 ; pages:283-290 |
Links: |
---|
DOI / URN: |
10.1007/s11277-019-06254-9 |
---|
Katalog-ID: |
OLC2053827521 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2053827521 | ||
003 | DE-627 | ||
005 | 20230504080233.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11277-019-06254-9 |2 doi | |
035 | |a (DE-627)OLC2053827521 | ||
035 | |a (DE-He213)s11277-019-06254-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Khalil, Mohamad |e verfasserin |0 (orcid)0000-0003-2004-0280 |4 aut | |
245 | 1 | 0 | |a Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. | ||
650 | 4 | |a Substrate integrated waveguide | |
650 | 4 | |a SIW | |
650 | 4 | |a Half-mode | |
650 | 4 | |a Slow-wave | |
650 | 4 | |a Miniaturization | |
700 | 1 | |a Kamarei, Mahmoud |4 aut | |
700 | 1 | |a Jomaah, Jalal |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Wireless personal communications |d Springer US, 1994 |g 107(2019), 1 vom: 18. März, Seite 283-290 |w (DE-627)188950273 |w (DE-600)1287489-9 |w (DE-576)049958909 |x 0929-6212 |7 nnns |
773 | 1 | 8 | |g volume:107 |g year:2019 |g number:1 |g day:18 |g month:03 |g pages:283-290 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11277-019-06254-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 107 |j 2019 |e 1 |b 18 |c 03 |h 283-290 |
author_variant |
m k mk m k mk j j jj |
---|---|
matchkey_str |
article:09296212:2019----::iitrzdafoelwaeusrtitgaewv |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11277-019-06254-9 doi (DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p DE-627 ger DE-627 rakwb eng 620 VZ Khalil, Mohamad verfasserin (orcid)0000-0003-2004-0280 aut Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization Kamarei, Mahmoud aut Jomaah, Jalal aut Enthalten in Wireless personal communications Springer US, 1994 107(2019), 1 vom: 18. März, Seite 283-290 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:107 year:2019 number:1 day:18 month:03 pages:283-290 https://doi.org/10.1007/s11277-019-06254-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 107 2019 1 18 03 283-290 |
spelling |
10.1007/s11277-019-06254-9 doi (DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p DE-627 ger DE-627 rakwb eng 620 VZ Khalil, Mohamad verfasserin (orcid)0000-0003-2004-0280 aut Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization Kamarei, Mahmoud aut Jomaah, Jalal aut Enthalten in Wireless personal communications Springer US, 1994 107(2019), 1 vom: 18. März, Seite 283-290 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:107 year:2019 number:1 day:18 month:03 pages:283-290 https://doi.org/10.1007/s11277-019-06254-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 107 2019 1 18 03 283-290 |
allfields_unstemmed |
10.1007/s11277-019-06254-9 doi (DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p DE-627 ger DE-627 rakwb eng 620 VZ Khalil, Mohamad verfasserin (orcid)0000-0003-2004-0280 aut Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization Kamarei, Mahmoud aut Jomaah, Jalal aut Enthalten in Wireless personal communications Springer US, 1994 107(2019), 1 vom: 18. März, Seite 283-290 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:107 year:2019 number:1 day:18 month:03 pages:283-290 https://doi.org/10.1007/s11277-019-06254-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 107 2019 1 18 03 283-290 |
allfieldsGer |
10.1007/s11277-019-06254-9 doi (DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p DE-627 ger DE-627 rakwb eng 620 VZ Khalil, Mohamad verfasserin (orcid)0000-0003-2004-0280 aut Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization Kamarei, Mahmoud aut Jomaah, Jalal aut Enthalten in Wireless personal communications Springer US, 1994 107(2019), 1 vom: 18. März, Seite 283-290 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:107 year:2019 number:1 day:18 month:03 pages:283-290 https://doi.org/10.1007/s11277-019-06254-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 107 2019 1 18 03 283-290 |
allfieldsSound |
10.1007/s11277-019-06254-9 doi (DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p DE-627 ger DE-627 rakwb eng 620 VZ Khalil, Mohamad verfasserin (orcid)0000-0003-2004-0280 aut Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization Kamarei, Mahmoud aut Jomaah, Jalal aut Enthalten in Wireless personal communications Springer US, 1994 107(2019), 1 vom: 18. März, Seite 283-290 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:107 year:2019 number:1 day:18 month:03 pages:283-290 https://doi.org/10.1007/s11277-019-06254-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 AR 107 2019 1 18 03 283-290 |
language |
English |
source |
Enthalten in Wireless personal communications 107(2019), 1 vom: 18. März, Seite 283-290 volume:107 year:2019 number:1 day:18 month:03 pages:283-290 |
sourceStr |
Enthalten in Wireless personal communications 107(2019), 1 vom: 18. März, Seite 283-290 volume:107 year:2019 number:1 day:18 month:03 pages:283-290 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Wireless personal communications |
authorswithroles_txt_mv |
Khalil, Mohamad @@aut@@ Kamarei, Mahmoud @@aut@@ Jomaah, Jalal @@aut@@ |
publishDateDaySort_date |
2019-03-18T00:00:00Z |
hierarchy_top_id |
188950273 |
dewey-sort |
3620 |
id |
OLC2053827521 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053827521</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080233.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-019-06254-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053827521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-019-06254-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khalil, Mohamad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2004-0280</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate integrated waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SIW</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Half-mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slow-wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Miniaturization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamarei, Mahmoud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jomaah, Jalal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">107(2019), 1 vom: 18. März, Seite 283-290</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:283-290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-019-06254-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">283-290</subfield></datafield></record></collection>
|
author |
Khalil, Mohamad |
spellingShingle |
Khalil, Mohamad ddc 620 misc Substrate integrated waveguide misc SIW misc Half-mode misc Slow-wave misc Miniaturization Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
authorStr |
Khalil, Mohamad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)188950273 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0929-6212 |
topic_title |
620 VZ Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter Substrate integrated waveguide SIW Half-mode Slow-wave Miniaturization |
topic |
ddc 620 misc Substrate integrated waveguide misc SIW misc Half-mode misc Slow-wave misc Miniaturization |
topic_unstemmed |
ddc 620 misc Substrate integrated waveguide misc SIW misc Half-mode misc Slow-wave misc Miniaturization |
topic_browse |
ddc 620 misc Substrate integrated waveguide misc SIW misc Half-mode misc Slow-wave misc Miniaturization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Wireless personal communications |
hierarchy_parent_id |
188950273 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Wireless personal communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 |
title |
Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
ctrlnum |
(DE-627)OLC2053827521 (DE-He213)s11277-019-06254-9-p |
title_full |
Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
author_sort |
Khalil, Mohamad |
journal |
Wireless personal communications |
journalStr |
Wireless personal communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
283 |
author_browse |
Khalil, Mohamad Kamarei, Mahmoud Jomaah, Jalal |
container_volume |
107 |
class |
620 VZ |
format_se |
Aufsätze |
author-letter |
Khalil, Mohamad |
doi_str_mv |
10.1007/s11277-019-06254-9 |
normlink |
(ORCID)0000-0003-2004-0280 |
normlink_prefix_str_mv |
(orcid)0000-0003-2004-0280 |
dewey-full |
620 |
title_sort |
miniaturized half-mode slow-wave substrate-integrated waveguide bandpass filter |
title_auth |
Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
abstract |
Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW GBV_ILN_70 |
container_issue |
1 |
title_short |
Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter |
url |
https://doi.org/10.1007/s11277-019-06254-9 |
remote_bool |
false |
author2 |
Kamarei, Mahmoud Jomaah, Jalal |
author2Str |
Kamarei, Mahmoud Jomaah, Jalal |
ppnlink |
188950273 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11277-019-06254-9 |
up_date |
2024-07-03T20:48:23.765Z |
_version_ |
1803592352420331520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053827521</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504080233.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-019-06254-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053827521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-019-06254-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khalil, Mohamad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2004-0280</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Miniaturized Half-Mode Slow-Wave Substrate-Integrated Waveguide Bandpass Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a miniaturized substrate integrated waveguide (SIW) band-pass cavity filter is presented. Miniaturization is achieved using the half-mode (HM) principle so the lateral dimension of the filter can be reduced by half. Moreover, the slow-wave (SW) technique is used to decrease the center frequency by more than $$30\%$$. Combining these two techniques will reduce filter dimensions by more than $$75\%$$ in comparison with the original SIW. By using an electromagnetic (EM) solver the effect of each geometrical parameter on the filter performance is demonstrated. Measurements on the fabricated filter are in good agreement with the numerical results. Input return loss is better than 10 dB, insertion loss of the filter is lower than 2.5 dB across a bandwidth of 3.3 GHz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate integrated waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SIW</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Half-mode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slow-wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Miniaturization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamarei, Mahmoud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jomaah, Jalal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">107(2019), 1 vom: 18. März, Seite 283-290</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:283-290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-019-06254-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">283-290</subfield></datafield></record></collection>
|
score |
7.400284 |