The high-temperature strength of commercial-purity alpha uranium
Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of se...
Ausführliche Beschreibung
Autor*in: |
Logan, R. W. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1983 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Metallurgical of Society of AIME 1983 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical transactions. A, Physical metallurgy and materials science - Springer-Verlag, 1975, 14(1983), 11 vom: Nov., Seite 2337-2346 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:1983 ; number:11 ; month:11 ; pages:2337-2346 |
Links: |
---|
DOI / URN: |
10.1007/BF02663309 |
---|
Katalog-ID: |
OLC2053949694 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2053949694 | ||
003 | DE-627 | ||
005 | 20230506021101.0 | ||
007 | tu | ||
008 | 200820s1983 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02663309 |2 doi | |
035 | |a (DE-627)OLC2053949694 | ||
035 | |a (DE-He213)BF02663309-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |q VZ |
100 | 1 | |a Logan, R. W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The high-temperature strength of commercial-purity alpha uranium |
264 | 1 | |c 1983 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Metallurgical of Society of AIME 1983 | ||
520 | |a Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. | ||
650 | 4 | |a Uranium | |
650 | 4 | |a Metallurgical Transaction | |
650 | 4 | |a Flow Stress | |
650 | 4 | |a Stress Exponent | |
650 | 4 | |a Steady State Flow Stress | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical transactions. A, Physical metallurgy and materials science |d Springer-Verlag, 1975 |g 14(1983), 11 vom: Nov., Seite 2337-2346 |w (DE-627)129429058 |w (DE-600)192156-3 |w (DE-576)01480204X |x 0026-086X |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:1983 |g number:11 |g month:11 |g pages:2337-2346 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02663309 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 14 |j 1983 |e 11 |c 11 |h 2337-2346 |
author_variant |
r w l rw rwl |
---|---|
matchkey_str |
article:0026086X:1983----::hhgtmeaueteghfomrilui |
hierarchy_sort_str |
1983 |
publishDate |
1983 |
allfields |
10.1007/BF02663309 doi (DE-627)OLC2053949694 (DE-He213)BF02663309-p DE-627 ger DE-627 rakwb eng 670 530 VZ Logan, R. W. verfasserin aut The high-temperature strength of commercial-purity alpha uranium 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1983 Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 14(1983), 11 vom: Nov., Seite 2337-2346 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:14 year:1983 number:11 month:11 pages:2337-2346 https://doi.org/10.1007/BF02663309 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 AR 14 1983 11 11 2337-2346 |
spelling |
10.1007/BF02663309 doi (DE-627)OLC2053949694 (DE-He213)BF02663309-p DE-627 ger DE-627 rakwb eng 670 530 VZ Logan, R. W. verfasserin aut The high-temperature strength of commercial-purity alpha uranium 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1983 Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 14(1983), 11 vom: Nov., Seite 2337-2346 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:14 year:1983 number:11 month:11 pages:2337-2346 https://doi.org/10.1007/BF02663309 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 AR 14 1983 11 11 2337-2346 |
allfields_unstemmed |
10.1007/BF02663309 doi (DE-627)OLC2053949694 (DE-He213)BF02663309-p DE-627 ger DE-627 rakwb eng 670 530 VZ Logan, R. W. verfasserin aut The high-temperature strength of commercial-purity alpha uranium 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1983 Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 14(1983), 11 vom: Nov., Seite 2337-2346 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:14 year:1983 number:11 month:11 pages:2337-2346 https://doi.org/10.1007/BF02663309 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 AR 14 1983 11 11 2337-2346 |
allfieldsGer |
10.1007/BF02663309 doi (DE-627)OLC2053949694 (DE-He213)BF02663309-p DE-627 ger DE-627 rakwb eng 670 530 VZ Logan, R. W. verfasserin aut The high-temperature strength of commercial-purity alpha uranium 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1983 Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 14(1983), 11 vom: Nov., Seite 2337-2346 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:14 year:1983 number:11 month:11 pages:2337-2346 https://doi.org/10.1007/BF02663309 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 AR 14 1983 11 11 2337-2346 |
allfieldsSound |
10.1007/BF02663309 doi (DE-627)OLC2053949694 (DE-He213)BF02663309-p DE-627 ger DE-627 rakwb eng 670 530 VZ Logan, R. W. verfasserin aut The high-temperature strength of commercial-purity alpha uranium 1983 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1983 Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 14(1983), 11 vom: Nov., Seite 2337-2346 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:14 year:1983 number:11 month:11 pages:2337-2346 https://doi.org/10.1007/BF02663309 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 AR 14 1983 11 11 2337-2346 |
language |
English |
source |
Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science 14(1983), 11 vom: Nov., Seite 2337-2346 volume:14 year:1983 number:11 month:11 pages:2337-2346 |
sourceStr |
Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science 14(1983), 11 vom: Nov., Seite 2337-2346 volume:14 year:1983 number:11 month:11 pages:2337-2346 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
authorswithroles_txt_mv |
Logan, R. W. @@aut@@ |
publishDateDaySort_date |
1983-11-01T00:00:00Z |
hierarchy_top_id |
129429058 |
dewey-sort |
3670 |
id |
OLC2053949694 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053949694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506021101.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1983 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02663309</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053949694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02663309-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Logan, R. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The high-temperature strength of commercial-purity alpha uranium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1983</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical of Society of AIME 1983</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uranium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady State Flow Stress</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions. A, Physical metallurgy and materials science</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">14(1983), 11 vom: Nov., Seite 2337-2346</subfield><subfield code="w">(DE-627)129429058</subfield><subfield code="w">(DE-600)192156-3</subfield><subfield code="w">(DE-576)01480204X</subfield><subfield code="x">0026-086X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:1983</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2337-2346</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02663309</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">1983</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">2337-2346</subfield></datafield></record></collection>
|
author |
Logan, R. W. |
spellingShingle |
Logan, R. W. ddc 670 misc Uranium misc Metallurgical Transaction misc Flow Stress misc Stress Exponent misc Steady State Flow Stress The high-temperature strength of commercial-purity alpha uranium |
authorStr |
Logan, R. W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129429058 |
format |
Article |
dewey-ones |
670 - Manufacturing 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-086X |
topic_title |
670 530 VZ The high-temperature strength of commercial-purity alpha uranium Uranium Metallurgical Transaction Flow Stress Stress Exponent Steady State Flow Stress |
topic |
ddc 670 misc Uranium misc Metallurgical Transaction misc Flow Stress misc Stress Exponent misc Steady State Flow Stress |
topic_unstemmed |
ddc 670 misc Uranium misc Metallurgical Transaction misc Flow Stress misc Stress Exponent misc Steady State Flow Stress |
topic_browse |
ddc 670 misc Uranium misc Metallurgical Transaction misc Flow Stress misc Stress Exponent misc Steady State Flow Stress |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
hierarchy_parent_id |
129429058 |
dewey-tens |
670 - Manufacturing 530 - Physics |
hierarchy_top_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X |
title |
The high-temperature strength of commercial-purity alpha uranium |
ctrlnum |
(DE-627)OLC2053949694 (DE-He213)BF02663309-p |
title_full |
The high-temperature strength of commercial-purity alpha uranium |
author_sort |
Logan, R. W. |
journal |
Metallurgical transactions. A, Physical metallurgy and materials science |
journalStr |
Metallurgical transactions. A, Physical metallurgy and materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
1983 |
contenttype_str_mv |
txt |
container_start_page |
2337 |
author_browse |
Logan, R. W. |
container_volume |
14 |
class |
670 530 VZ |
format_se |
Aufsätze |
author-letter |
Logan, R. W. |
doi_str_mv |
10.1007/BF02663309 |
dewey-full |
670 530 |
title_sort |
the high-temperature strength of commercial-purity alpha uranium |
title_auth |
The high-temperature strength of commercial-purity alpha uranium |
abstract |
Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. © The Metallurgical of Society of AIME 1983 |
abstractGer |
Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. © The Metallurgical of Society of AIME 1983 |
abstract_unstemmed |
Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress. © The Metallurgical of Society of AIME 1983 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4313 GBV_ILN_4319 |
container_issue |
11 |
title_short |
The high-temperature strength of commercial-purity alpha uranium |
url |
https://doi.org/10.1007/BF02663309 |
remote_bool |
false |
ppnlink |
129429058 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02663309 |
up_date |
2024-07-03T21:19:54.597Z |
_version_ |
1803594335102435328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053949694</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506021101.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1983 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02663309</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053949694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02663309-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Logan, R. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The high-temperature strength of commercial-purity alpha uranium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1983</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical of Society of AIME 1983</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effects of adding less than 500 ppm of aluminum, iron, and silicon on the high-temperature properties of alpha uranium are characterized. Adding aluminum or adding iron and silicon increased the flow stress in all cases and also increased the activation energy if a fine dispersion of second-phase particles was retained. On solution treating the additives in the beta region and retesting the alpha phase, the flow stress increased by about 50 pct—a result of much larger alpha-phase grain size and dispersion-hardening effects. Strong crystallographic textures developed by rolling did not significantly affect flow stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uranium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady State Flow Stress</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions. A, Physical metallurgy and materials science</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">14(1983), 11 vom: Nov., Seite 2337-2346</subfield><subfield code="w">(DE-627)129429058</subfield><subfield code="w">(DE-600)192156-3</subfield><subfield code="w">(DE-576)01480204X</subfield><subfield code="x">0026-086X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:1983</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2337-2346</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02663309</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">1983</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">2337-2346</subfield></datafield></record></collection>
|
score |
7.39933 |