Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)
Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was...
Ausführliche Beschreibung
Autor*in: |
Nardone, V. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1987 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Metallurgical of Society of AIME 1987 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical transactions. A, Physical metallurgy and materials science - Springer-Verlag, 1975, 18(1987), 1 vom: Jan., Seite 109-114 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:1987 ; number:1 ; month:01 ; pages:109-114 |
Links: |
---|
DOI / URN: |
10.1007/BF02646227 |
---|
Katalog-ID: |
OLC2053958383 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2053958383 | ||
003 | DE-627 | ||
005 | 20230303053112.0 | ||
007 | tu | ||
008 | 200820s1987 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02646227 |2 doi | |
035 | |a (DE-627)OLC2053958383 | ||
035 | |a (DE-He213)BF02646227-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |q VZ |
100 | 1 | |a Nardone, V. C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
264 | 1 | |c 1987 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Metallurgical of Society of AIME 1987 | ||
520 | |a Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. | ||
650 | 4 | |a Metallurgical Transaction | |
650 | 4 | |a Creep Testing | |
650 | 4 | |a Creep Behavior | |
650 | 4 | |a Stress Exponent | |
650 | 4 | |a Steady State Creep | |
700 | 1 | |a Strife, J. R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical transactions. A, Physical metallurgy and materials science |d Springer-Verlag, 1975 |g 18(1987), 1 vom: Jan., Seite 109-114 |w (DE-627)129429058 |w (DE-600)192156-3 |w (DE-576)01480204X |x 0026-086X |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:1987 |g number:1 |g month:01 |g pages:109-114 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02646227 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 18 |j 1987 |e 1 |c 01 |h 109-114 |
author_variant |
v c n vc vcn j r s jr jrs |
---|---|
matchkey_str |
article:0026086X:1987----::nlssfhcepeairfiiocriehse |
hierarchy_sort_str |
1987 |
publishDate |
1987 |
allfields |
10.1007/BF02646227 doi (DE-627)OLC2053958383 (DE-He213)BF02646227-p DE-627 ger DE-627 rakwb eng 670 530 VZ Nardone, V. C. verfasserin aut Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1987 Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep Strife, J. R. aut Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 18(1987), 1 vom: Jan., Seite 109-114 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:18 year:1987 number:1 month:01 pages:109-114 https://doi.org/10.1007/BF02646227 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 18 1987 1 01 109-114 |
spelling |
10.1007/BF02646227 doi (DE-627)OLC2053958383 (DE-He213)BF02646227-p DE-627 ger DE-627 rakwb eng 670 530 VZ Nardone, V. C. verfasserin aut Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1987 Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep Strife, J. R. aut Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 18(1987), 1 vom: Jan., Seite 109-114 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:18 year:1987 number:1 month:01 pages:109-114 https://doi.org/10.1007/BF02646227 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 18 1987 1 01 109-114 |
allfields_unstemmed |
10.1007/BF02646227 doi (DE-627)OLC2053958383 (DE-He213)BF02646227-p DE-627 ger DE-627 rakwb eng 670 530 VZ Nardone, V. C. verfasserin aut Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1987 Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep Strife, J. R. aut Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 18(1987), 1 vom: Jan., Seite 109-114 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:18 year:1987 number:1 month:01 pages:109-114 https://doi.org/10.1007/BF02646227 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 18 1987 1 01 109-114 |
allfieldsGer |
10.1007/BF02646227 doi (DE-627)OLC2053958383 (DE-He213)BF02646227-p DE-627 ger DE-627 rakwb eng 670 530 VZ Nardone, V. C. verfasserin aut Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1987 Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep Strife, J. R. aut Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 18(1987), 1 vom: Jan., Seite 109-114 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:18 year:1987 number:1 month:01 pages:109-114 https://doi.org/10.1007/BF02646227 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 18 1987 1 01 109-114 |
allfieldsSound |
10.1007/BF02646227 doi (DE-627)OLC2053958383 (DE-He213)BF02646227-p DE-627 ger DE-627 rakwb eng 670 530 VZ Nardone, V. C. verfasserin aut Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Metallurgical of Society of AIME 1987 Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep Strife, J. R. aut Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science Springer-Verlag, 1975 18(1987), 1 vom: Jan., Seite 109-114 (DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X 0026-086X nnns volume:18 year:1987 number:1 month:01 pages:109-114 https://doi.org/10.1007/BF02646227 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 AR 18 1987 1 01 109-114 |
language |
English |
source |
Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science 18(1987), 1 vom: Jan., Seite 109-114 volume:18 year:1987 number:1 month:01 pages:109-114 |
sourceStr |
Enthalten in Metallurgical transactions. A, Physical metallurgy and materials science 18(1987), 1 vom: Jan., Seite 109-114 volume:18 year:1987 number:1 month:01 pages:109-114 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
authorswithroles_txt_mv |
Nardone, V. C. @@aut@@ Strife, J. R. @@aut@@ |
publishDateDaySort_date |
1987-01-01T00:00:00Z |
hierarchy_top_id |
129429058 |
dewey-sort |
3670 |
id |
OLC2053958383 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053958383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303053112.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02646227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053958383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02646227-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nardone, V. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical of Society of AIME 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady State Creep</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strife, J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions. A, Physical metallurgy and materials science</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">18(1987), 1 vom: Jan., Seite 109-114</subfield><subfield code="w">(DE-627)129429058</subfield><subfield code="w">(DE-600)192156-3</subfield><subfield code="w">(DE-576)01480204X</subfield><subfield code="x">0026-086X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:109-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02646227</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">1987</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">109-114</subfield></datafield></record></collection>
|
author |
Nardone, V. C. |
spellingShingle |
Nardone, V. C. ddc 670 misc Metallurgical Transaction misc Creep Testing misc Creep Behavior misc Stress Exponent misc Steady State Creep Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
authorStr |
Nardone, V. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129429058 |
format |
Article |
dewey-ones |
670 - Manufacturing 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-086X |
topic_title |
670 530 VZ Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) Metallurgical Transaction Creep Testing Creep Behavior Stress Exponent Steady State Creep |
topic |
ddc 670 misc Metallurgical Transaction misc Creep Testing misc Creep Behavior misc Stress Exponent misc Steady State Creep |
topic_unstemmed |
ddc 670 misc Metallurgical Transaction misc Creep Testing misc Creep Behavior misc Stress Exponent misc Steady State Creep |
topic_browse |
ddc 670 misc Metallurgical Transaction misc Creep Testing misc Creep Behavior misc Stress Exponent misc Steady State Creep |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
hierarchy_parent_id |
129429058 |
dewey-tens |
670 - Manufacturing 530 - Physics |
hierarchy_top_title |
Metallurgical transactions. A, Physical metallurgy and materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129429058 (DE-600)192156-3 (DE-576)01480204X |
title |
Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
ctrlnum |
(DE-627)OLC2053958383 (DE-He213)BF02646227-p |
title_full |
Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
author_sort |
Nardone, V. C. |
journal |
Metallurgical transactions. A, Physical metallurgy and materials science |
journalStr |
Metallurgical transactions. A, Physical metallurgy and materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
1987 |
contenttype_str_mv |
txt |
container_start_page |
109 |
author_browse |
Nardone, V. C. Strife, J. R. |
container_volume |
18 |
class |
670 530 VZ |
format_se |
Aufsätze |
author-letter |
Nardone, V. C. |
doi_str_mv |
10.1007/BF02646227 |
dewey-full |
670 530 |
title_sort |
analysis of the creep behavior of silicon carbide whisker reinforced 2124 al(t4) |
title_auth |
Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
abstract |
Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. © The Metallurgical of Society of AIME 1987 |
abstractGer |
Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. © The Metallurgical of Society of AIME 1987 |
abstract_unstemmed |
Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep. © The Metallurgical of Society of AIME 1987 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4319 |
container_issue |
1 |
title_short |
Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) |
url |
https://doi.org/10.1007/BF02646227 |
remote_bool |
false |
author2 |
Strife, J. R. |
author2Str |
Strife, J. R. |
ppnlink |
129429058 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02646227 |
up_date |
2024-07-03T21:21:56.966Z |
_version_ |
1803594463416680448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2053958383</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303053112.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02646227</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2053958383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02646227-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nardone, V. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Metallurgical of Society of AIME 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of stress and temperature on the steady state creep rate of $ SiC_{w} $/2124 Al (T4) has been determined. The stress exponent for steady state creep of the composite is shown to increase from a value of 8.4 at 177 °C to a value of 21 at 288 °C. The activation energy for creep was determined to be 277 kJ/mol for testing in the temperature range from 149 to 204 °C and 431 kJ/mol for testing from 274 to 302 °C. These values are much greater than that for self-diffusion in aluminum. Such a severe temperature and stress dependence of the steady state creep rate is characteristic of precipitation and oxide dispersion strengthened nickel-base superalloys, where the creep behavior is explained by the particle strengthening contribution being a significant fraction of the applied creep stress. In contrast, the estimated particle strengthening for the composite is much less than the applied creep stresses. Alternate strengthening mechanisms are proposed to account for the observed creep behavior of the composite material, including the effect of temperature on the measured values of the stress exponent and activation energy for creep.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallurgical Transaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steady State Creep</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strife, J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical transactions. A, Physical metallurgy and materials science</subfield><subfield code="d">Springer-Verlag, 1975</subfield><subfield code="g">18(1987), 1 vom: Jan., Seite 109-114</subfield><subfield code="w">(DE-627)129429058</subfield><subfield code="w">(DE-600)192156-3</subfield><subfield code="w">(DE-576)01480204X</subfield><subfield code="x">0026-086X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:109-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02646227</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">1987</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">109-114</subfield></datafield></record></collection>
|
score |
7.4028063 |