Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy
The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation...
Ausführliche Beschreibung
Autor*in: |
Chen, Lijia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical and materials transactions / A - Springer US, 1994, 38(2007), 13 vom: 22. Mai, Seite 2235-2241 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2007 ; number:13 ; day:22 ; month:05 ; pages:2235-2241 |
Links: |
---|
DOI / URN: |
10.1007/s11661-007-9181-y |
---|
Katalog-ID: |
OLC2054028193 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054028193 | ||
003 | DE-627 | ||
005 | 20230303054031.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11661-007-9181-y |2 doi | |
035 | |a (DE-627)OLC2054028193 | ||
035 | |a (DE-He213)s11661-007-9181-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |q VZ |
084 | |a 19,1 |2 ssgn | ||
100 | 1 | |a Chen, Lijia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 | ||
520 | |a The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. | ||
650 | 4 | |a Fatigue | |
650 | 4 | |a Magnesium Alloy | |
650 | 4 | |a Strain Amplitude | |
650 | 4 | |a Plastic Strain Amplitude | |
650 | 4 | |a Total Strain Amplitude | |
700 | 1 | |a Wang, Chunyan |4 aut | |
700 | 1 | |a Wu, Wei |4 aut | |
700 | 1 | |a Liu, Zheng |4 aut | |
700 | 1 | |a Stoica, Grigoreta M. |4 aut | |
700 | 1 | |a Wu, Liang |4 aut | |
700 | 1 | |a Liaw, Peter K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical and materials transactions / A |d Springer US, 1994 |g 38(2007), 13 vom: 22. Mai, Seite 2235-2241 |w (DE-627)171342011 |w (DE-600)1179415-X |w (DE-576)038876930 |x 1073-5623 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2007 |g number:13 |g day:22 |g month:05 |g pages:2235-2241 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11661-007-9181-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2007 |e 13 |b 22 |c 05 |h 2235-2241 |
author_variant |
l c lc c w cw w w ww z l zl g m s gm gms l w lw p k l pk pkl |
---|---|
matchkey_str |
article:10735623:2007----::occeaiubhvooaaetuea |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11661-007-9181-y doi (DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Chen, Lijia verfasserin aut Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude Wang, Chunyan aut Wu, Wei aut Liu, Zheng aut Stoica, Grigoreta M. aut Wu, Liang aut Liaw, Peter K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 38(2007), 13 vom: 22. Mai, Seite 2235-2241 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 https://doi.org/10.1007/s11661-007-9181-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 38 2007 13 22 05 2235-2241 |
spelling |
10.1007/s11661-007-9181-y doi (DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Chen, Lijia verfasserin aut Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude Wang, Chunyan aut Wu, Wei aut Liu, Zheng aut Stoica, Grigoreta M. aut Wu, Liang aut Liaw, Peter K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 38(2007), 13 vom: 22. Mai, Seite 2235-2241 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 https://doi.org/10.1007/s11661-007-9181-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 38 2007 13 22 05 2235-2241 |
allfields_unstemmed |
10.1007/s11661-007-9181-y doi (DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Chen, Lijia verfasserin aut Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude Wang, Chunyan aut Wu, Wei aut Liu, Zheng aut Stoica, Grigoreta M. aut Wu, Liang aut Liaw, Peter K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 38(2007), 13 vom: 22. Mai, Seite 2235-2241 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 https://doi.org/10.1007/s11661-007-9181-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 38 2007 13 22 05 2235-2241 |
allfieldsGer |
10.1007/s11661-007-9181-y doi (DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Chen, Lijia verfasserin aut Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude Wang, Chunyan aut Wu, Wei aut Liu, Zheng aut Stoica, Grigoreta M. aut Wu, Liang aut Liaw, Peter K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 38(2007), 13 vom: 22. Mai, Seite 2235-2241 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 https://doi.org/10.1007/s11661-007-9181-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 38 2007 13 22 05 2235-2241 |
allfieldsSound |
10.1007/s11661-007-9181-y doi (DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Chen, Lijia verfasserin aut Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude Wang, Chunyan aut Wu, Wei aut Liu, Zheng aut Stoica, Grigoreta M. aut Wu, Liang aut Liaw, Peter K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 38(2007), 13 vom: 22. Mai, Seite 2235-2241 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 https://doi.org/10.1007/s11661-007-9181-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 38 2007 13 22 05 2235-2241 |
language |
English |
source |
Enthalten in Metallurgical and materials transactions / A 38(2007), 13 vom: 22. Mai, Seite 2235-2241 volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 |
sourceStr |
Enthalten in Metallurgical and materials transactions / A 38(2007), 13 vom: 22. Mai, Seite 2235-2241 volume:38 year:2007 number:13 day:22 month:05 pages:2235-2241 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Metallurgical and materials transactions / A |
authorswithroles_txt_mv |
Chen, Lijia @@aut@@ Wang, Chunyan @@aut@@ Wu, Wei @@aut@@ Liu, Zheng @@aut@@ Stoica, Grigoreta M. @@aut@@ Wu, Liang @@aut@@ Liaw, Peter K. @@aut@@ |
publishDateDaySort_date |
2007-05-22T00:00:00Z |
hierarchy_top_id |
171342011 |
dewey-sort |
3670 |
id |
OLC2054028193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054028193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303054031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11661-007-9181-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054028193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11661-007-9181-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain Amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic Strain Amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Strain Amplitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoica, Grigoreta M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liaw, Peter K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / A</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">38(2007), 13 vom: 22. Mai, Seite 2235-2241</subfield><subfield code="w">(DE-627)171342011</subfield><subfield code="w">(DE-600)1179415-X</subfield><subfield code="w">(DE-576)038876930</subfield><subfield code="x">1073-5623</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:13</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2235-2241</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11661-007-9181-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2007</subfield><subfield code="e">13</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">2235-2241</subfield></datafield></record></collection>
|
author |
Chen, Lijia |
spellingShingle |
Chen, Lijia ddc 670 ssgn 19,1 misc Fatigue misc Magnesium Alloy misc Strain Amplitude misc Plastic Strain Amplitude misc Total Strain Amplitude Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
authorStr |
Chen, Lijia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171342011 |
format |
Article |
dewey-ones |
670 - Manufacturing 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1073-5623 |
topic_title |
670 530 VZ 19,1 ssgn Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy Fatigue Magnesium Alloy Strain Amplitude Plastic Strain Amplitude Total Strain Amplitude |
topic |
ddc 670 ssgn 19,1 misc Fatigue misc Magnesium Alloy misc Strain Amplitude misc Plastic Strain Amplitude misc Total Strain Amplitude |
topic_unstemmed |
ddc 670 ssgn 19,1 misc Fatigue misc Magnesium Alloy misc Strain Amplitude misc Plastic Strain Amplitude misc Total Strain Amplitude |
topic_browse |
ddc 670 ssgn 19,1 misc Fatigue misc Magnesium Alloy misc Strain Amplitude misc Plastic Strain Amplitude misc Total Strain Amplitude |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical and materials transactions / A |
hierarchy_parent_id |
171342011 |
dewey-tens |
670 - Manufacturing 530 - Physics |
hierarchy_top_title |
Metallurgical and materials transactions / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 |
title |
Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
ctrlnum |
(DE-627)OLC2054028193 (DE-He213)s11661-007-9181-y-p |
title_full |
Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
author_sort |
Chen, Lijia |
journal |
Metallurgical and materials transactions / A |
journalStr |
Metallurgical and materials transactions / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
2235 |
author_browse |
Chen, Lijia Wang, Chunyan Wu, Wei Liu, Zheng Stoica, Grigoreta M. Wu, Liang Liaw, Peter K. |
container_volume |
38 |
class |
670 530 VZ 19,1 ssgn |
format_se |
Aufsätze |
author-letter |
Chen, Lijia |
doi_str_mv |
10.1007/s11661-007-9181-y |
dewey-full |
670 530 |
title_sort |
low-cycle fatigue behavior of an as-extruded am50 magnesium alloy |
title_auth |
Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
abstract |
The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 |
abstractGer |
The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 |
abstract_unstemmed |
The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens. © THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_62 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4116 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
13 |
title_short |
Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy |
url |
https://doi.org/10.1007/s11661-007-9181-y |
remote_bool |
false |
author2 |
Wang, Chunyan Wu, Wei Liu, Zheng Stoica, Grigoreta M. Wu, Liang Liaw, Peter K. |
author2Str |
Wang, Chunyan Wu, Wei Liu, Zheng Stoica, Grigoreta M. Wu, Liang Liaw, Peter K. |
ppnlink |
171342011 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11661-007-9181-y |
up_date |
2024-07-03T21:39:57.142Z |
_version_ |
1803595596062261248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054028193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303054031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11661-007-9181-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054028193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11661-007-9181-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Lijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-Cycle Fatigue Behavior of an As-Extruded AM50 Magnesium Alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy has been investigated. The cyclic stress response of the alloy strongly depends on the imposed strain amplitude. It is also noted that at the higher total strain amplitudes, the alloy exhibits a pronounced anisotropic deformation behavior in the direction of tension and compression, where the width of the σ-ε hysteresis loop in the compressive direction is greater than that in the tensile direction. At the total strain amplitude of 1.5 pct, a serrated flow can be observed in both tensile and compressive directions of the σ-ε hysteresis loop. This means that dynamic strain aging takes place during fatigue deformation. The relation between elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior and can be well described by the Basquin and Coffin–Manson equations, respectively. In addition, crack initiation and propagation modes are suggested, based on scanning electron microscopy observations on the fracture surfaces of fatigued specimens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain Amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic Strain Amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Strain Amplitude</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoica, Grigoreta M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liaw, Peter K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / A</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">38(2007), 13 vom: 22. Mai, Seite 2235-2241</subfield><subfield code="w">(DE-627)171342011</subfield><subfield code="w">(DE-600)1179415-X</subfield><subfield code="w">(DE-576)038876930</subfield><subfield code="x">1073-5623</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:13</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2235-2241</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11661-007-9181-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2007</subfield><subfield code="e">13</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">2235-2241</subfield></datafield></record></collection>
|
score |
7.4000053 |