Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy
Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated...
Ausführliche Beschreibung
Autor*in: |
Mondal, Chandan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society and ASM International 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical and materials transactions / A - Springer US, 1994, 44(2013), 6 vom: 08. März, Seite 2764-2777 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2013 ; number:6 ; day:08 ; month:03 ; pages:2764-2777 |
Links: |
---|
DOI / URN: |
10.1007/s11661-013-1678-y |
---|
Katalog-ID: |
OLC2054048208 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054048208 | ||
003 | DE-627 | ||
005 | 20230303055825.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11661-013-1678-y |2 doi | |
035 | |a (DE-627)OLC2054048208 | ||
035 | |a (DE-He213)s11661-013-1678-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |q VZ |
084 | |a 19,1 |2 ssgn | ||
100 | 1 | |a Mondal, Chandan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society and ASM International 2013 | ||
520 | |a Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. | ||
650 | 4 | |a Yield Locus | |
650 | 4 | |a Knoop Hardness | |
650 | 4 | |a Maximum Yield Strength | |
650 | 4 | |a Work Hardening Behavior | |
650 | 4 | |a Yield Strength Variation | |
700 | 1 | |a Singh, A. K. |4 aut | |
700 | 1 | |a Mukhopadhyay, A. K. |4 aut | |
700 | 1 | |a Chattopadhyay, K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical and materials transactions / A |d Springer US, 1994 |g 44(2013), 6 vom: 08. März, Seite 2764-2777 |w (DE-627)171342011 |w (DE-600)1179415-X |w (DE-576)038876930 |x 1073-5623 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2013 |g number:6 |g day:08 |g month:03 |g pages:2764-2777 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11661-013-1678-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 44 |j 2013 |e 6 |b 08 |c 03 |h 2764-2777 |
author_variant |
c m cm a k s ak aks a k m ak akm k c kc |
---|---|
matchkey_str |
article:10735623:2013----::fetodfeetoeohtrsrlign00lmnmloprimc |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11661-013-1678-y doi (DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Mondal, Chandan verfasserin aut Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society and ASM International 2013 Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation Singh, A. K. aut Mukhopadhyay, A. K. aut Chattopadhyay, K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 44(2013), 6 vom: 08. März, Seite 2764-2777 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 https://doi.org/10.1007/s11661-013-1678-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 44 2013 6 08 03 2764-2777 |
spelling |
10.1007/s11661-013-1678-y doi (DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Mondal, Chandan verfasserin aut Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society and ASM International 2013 Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation Singh, A. K. aut Mukhopadhyay, A. K. aut Chattopadhyay, K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 44(2013), 6 vom: 08. März, Seite 2764-2777 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 https://doi.org/10.1007/s11661-013-1678-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 44 2013 6 08 03 2764-2777 |
allfields_unstemmed |
10.1007/s11661-013-1678-y doi (DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Mondal, Chandan verfasserin aut Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society and ASM International 2013 Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation Singh, A. K. aut Mukhopadhyay, A. K. aut Chattopadhyay, K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 44(2013), 6 vom: 08. März, Seite 2764-2777 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 https://doi.org/10.1007/s11661-013-1678-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 44 2013 6 08 03 2764-2777 |
allfieldsGer |
10.1007/s11661-013-1678-y doi (DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Mondal, Chandan verfasserin aut Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society and ASM International 2013 Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation Singh, A. K. aut Mukhopadhyay, A. K. aut Chattopadhyay, K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 44(2013), 6 vom: 08. März, Seite 2764-2777 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 https://doi.org/10.1007/s11661-013-1678-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 44 2013 6 08 03 2764-2777 |
allfieldsSound |
10.1007/s11661-013-1678-y doi (DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p DE-627 ger DE-627 rakwb eng 670 530 VZ 19,1 ssgn Mondal, Chandan verfasserin aut Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society and ASM International 2013 Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation Singh, A. K. aut Mukhopadhyay, A. K. aut Chattopadhyay, K. aut Enthalten in Metallurgical and materials transactions / A Springer US, 1994 44(2013), 6 vom: 08. März, Seite 2764-2777 (DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 1073-5623 nnns volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 https://doi.org/10.1007/s11661-013-1678-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 AR 44 2013 6 08 03 2764-2777 |
language |
English |
source |
Enthalten in Metallurgical and materials transactions / A 44(2013), 6 vom: 08. März, Seite 2764-2777 volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 |
sourceStr |
Enthalten in Metallurgical and materials transactions / A 44(2013), 6 vom: 08. März, Seite 2764-2777 volume:44 year:2013 number:6 day:08 month:03 pages:2764-2777 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Metallurgical and materials transactions / A |
authorswithroles_txt_mv |
Mondal, Chandan @@aut@@ Singh, A. K. @@aut@@ Mukhopadhyay, A. K. @@aut@@ Chattopadhyay, K. @@aut@@ |
publishDateDaySort_date |
2013-03-08T00:00:00Z |
hierarchy_top_id |
171342011 |
dewey-sort |
3670 |
id |
OLC2054048208 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054048208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303055825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11661-013-1678-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054048208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11661-013-1678-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mondal, Chandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society and ASM International 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield Locus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knoop Hardness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum Yield Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work Hardening Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield Strength Variation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukhopadhyay, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chattopadhyay, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / A</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">44(2013), 6 vom: 08. März, Seite 2764-2777</subfield><subfield code="w">(DE-627)171342011</subfield><subfield code="w">(DE-600)1179415-X</subfield><subfield code="w">(DE-576)038876930</subfield><subfield code="x">1073-5623</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2764-2777</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11661-013-1678-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield><subfield code="h">2764-2777</subfield></datafield></record></collection>
|
author |
Mondal, Chandan |
spellingShingle |
Mondal, Chandan ddc 670 ssgn 19,1 misc Yield Locus misc Knoop Hardness misc Maximum Yield Strength misc Work Hardening Behavior misc Yield Strength Variation Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
authorStr |
Mondal, Chandan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171342011 |
format |
Article |
dewey-ones |
670 - Manufacturing 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1073-5623 |
topic_title |
670 530 VZ 19,1 ssgn Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy Yield Locus Knoop Hardness Maximum Yield Strength Work Hardening Behavior Yield Strength Variation |
topic |
ddc 670 ssgn 19,1 misc Yield Locus misc Knoop Hardness misc Maximum Yield Strength misc Work Hardening Behavior misc Yield Strength Variation |
topic_unstemmed |
ddc 670 ssgn 19,1 misc Yield Locus misc Knoop Hardness misc Maximum Yield Strength misc Work Hardening Behavior misc Yield Strength Variation |
topic_browse |
ddc 670 ssgn 19,1 misc Yield Locus misc Knoop Hardness misc Maximum Yield Strength misc Work Hardening Behavior misc Yield Strength Variation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metallurgical and materials transactions / A |
hierarchy_parent_id |
171342011 |
dewey-tens |
670 - Manufacturing 530 - Physics |
hierarchy_top_title |
Metallurgical and materials transactions / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171342011 (DE-600)1179415-X (DE-576)038876930 |
title |
Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
ctrlnum |
(DE-627)OLC2054048208 (DE-He213)s11661-013-1678-y-p |
title_full |
Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
author_sort |
Mondal, Chandan |
journal |
Metallurgical and materials transactions / A |
journalStr |
Metallurgical and materials transactions / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
2764 |
author_browse |
Mondal, Chandan Singh, A. K. Mukhopadhyay, A. K. Chattopadhyay, K. |
container_volume |
44 |
class |
670 530 VZ 19,1 ssgn |
format_se |
Aufsätze |
author-letter |
Mondal, Chandan |
doi_str_mv |
10.1007/s11661-013-1678-y |
dewey-full |
670 530 |
title_sort |
effects of different modes of hot cross-rolling in 7010 aluminum alloy: part ii. mechanical properties anisotropy |
title_auth |
Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
abstract |
Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. © The Minerals, Metals & Materials Society and ASM International 2013 |
abstractGer |
Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. © The Minerals, Metals & Materials Society and ASM International 2013 |
abstract_unstemmed |
Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally. © The Minerals, Metals & Materials Society and ASM International 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2027 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy |
url |
https://doi.org/10.1007/s11661-013-1678-y |
remote_bool |
false |
author2 |
Singh, A. K. Mukhopadhyay, A. K. Chattopadhyay, K. |
author2Str |
Singh, A. K. Mukhopadhyay, A. K. Chattopadhyay, K. |
ppnlink |
171342011 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11661-013-1678-y |
up_date |
2024-07-03T21:45:17.839Z |
_version_ |
1803595932333244416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054048208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303055825.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11661-013-1678-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054048208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11661-013-1678-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mondal, Chandan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Different Modes of Hot Cross-Rolling in 7010 Aluminum Alloy: Part II. Mechanical Properties Anisotropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society and ASM International 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (AIP) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The AIP and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low AIP. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill’s anisotropic equation are compared with that obtained experimentally.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield Locus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knoop Hardness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum Yield Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work Hardening Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield Strength Variation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukhopadhyay, A. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chattopadhyay, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions / A</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">44(2013), 6 vom: 08. März, Seite 2764-2777</subfield><subfield code="w">(DE-627)171342011</subfield><subfield code="w">(DE-600)1179415-X</subfield><subfield code="w">(DE-576)038876930</subfield><subfield code="x">1073-5623</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2764-2777</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11661-013-1678-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield><subfield code="h">2764-2777</subfield></datafield></record></collection>
|
score |
7.4016685 |