Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations
Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a b...
Ausführliche Beschreibung
Autor*in: |
Gutshabash, E. Sh. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and mathematical physics - Kluwer Academic Publishers-Plenum Publishers, 1969, 115(1998), 3 vom: Juni, Seite 619-638 |
---|---|
Übergeordnetes Werk: |
volume:115 ; year:1998 ; number:3 ; month:06 ; pages:619-638 |
Links: |
---|
DOI / URN: |
10.1007/BF02575486 |
---|
Katalog-ID: |
OLC2054217654 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054217654 | ||
003 | DE-627 | ||
005 | 20230504055428.0 | ||
007 | tu | ||
008 | 200819s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02575486 |2 doi | |
035 | |a (DE-627)OLC2054217654 | ||
035 | |a (DE-He213)BF02575486-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Gutshabash, E. Sh. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1998 | ||
520 | |a Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. | ||
650 | 4 | |a Soliton | |
650 | 4 | |a Curve Space | |
650 | 4 | |a Trace Identity | |
650 | 4 | |a Inverse Scatter Problem | |
650 | 4 | |a Maxwell Stress Tensor | |
700 | 1 | |a Lipovskii, V. D. |4 aut | |
700 | 1 | |a Nikulichev, S. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and mathematical physics |d Kluwer Academic Publishers-Plenum Publishers, 1969 |g 115(1998), 3 vom: Juni, Seite 619-638 |w (DE-627)130017507 |w (DE-600)420246-6 |w (DE-576)01556018X |x 0040-5779 |7 nnns |
773 | 1 | 8 | |g volume:115 |g year:1998 |g number:3 |g month:06 |g pages:619-638 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02575486 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 115 |j 1998 |e 3 |c 06 |h 619-638 |
author_variant |
e s g es esg v d l vd vdl s s n ss ssn |
---|---|
matchkey_str |
article:00405779:1998----::olnamdlncresaeageuvlneneatouino2dm |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1007/BF02575486 doi (DE-627)OLC2054217654 (DE-He213)BF02575486-p DE-627 ger DE-627 rakwb eng 530 VZ Gutshabash, E. Sh. verfasserin aut Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor Lipovskii, V. D. aut Nikulichev, S. S. aut Enthalten in Theoretical and mathematical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(1998), 3 vom: Juni, Seite 619-638 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:115 year:1998 number:3 month:06 pages:619-638 https://doi.org/10.1007/BF02575486 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 AR 115 1998 3 06 619-638 |
spelling |
10.1007/BF02575486 doi (DE-627)OLC2054217654 (DE-He213)BF02575486-p DE-627 ger DE-627 rakwb eng 530 VZ Gutshabash, E. Sh. verfasserin aut Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor Lipovskii, V. D. aut Nikulichev, S. S. aut Enthalten in Theoretical and mathematical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(1998), 3 vom: Juni, Seite 619-638 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:115 year:1998 number:3 month:06 pages:619-638 https://doi.org/10.1007/BF02575486 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 AR 115 1998 3 06 619-638 |
allfields_unstemmed |
10.1007/BF02575486 doi (DE-627)OLC2054217654 (DE-He213)BF02575486-p DE-627 ger DE-627 rakwb eng 530 VZ Gutshabash, E. Sh. verfasserin aut Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor Lipovskii, V. D. aut Nikulichev, S. S. aut Enthalten in Theoretical and mathematical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(1998), 3 vom: Juni, Seite 619-638 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:115 year:1998 number:3 month:06 pages:619-638 https://doi.org/10.1007/BF02575486 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 AR 115 1998 3 06 619-638 |
allfieldsGer |
10.1007/BF02575486 doi (DE-627)OLC2054217654 (DE-He213)BF02575486-p DE-627 ger DE-627 rakwb eng 530 VZ Gutshabash, E. Sh. verfasserin aut Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor Lipovskii, V. D. aut Nikulichev, S. S. aut Enthalten in Theoretical and mathematical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(1998), 3 vom: Juni, Seite 619-638 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:115 year:1998 number:3 month:06 pages:619-638 https://doi.org/10.1007/BF02575486 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 AR 115 1998 3 06 619-638 |
allfieldsSound |
10.1007/BF02575486 doi (DE-627)OLC2054217654 (DE-He213)BF02575486-p DE-627 ger DE-627 rakwb eng 530 VZ Gutshabash, E. Sh. verfasserin aut Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor Lipovskii, V. D. aut Nikulichev, S. S. aut Enthalten in Theoretical and mathematical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(1998), 3 vom: Juni, Seite 619-638 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:115 year:1998 number:3 month:06 pages:619-638 https://doi.org/10.1007/BF02575486 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 AR 115 1998 3 06 619-638 |
language |
English |
source |
Enthalten in Theoretical and mathematical physics 115(1998), 3 vom: Juni, Seite 619-638 volume:115 year:1998 number:3 month:06 pages:619-638 |
sourceStr |
Enthalten in Theoretical and mathematical physics 115(1998), 3 vom: Juni, Seite 619-638 volume:115 year:1998 number:3 month:06 pages:619-638 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and mathematical physics |
authorswithroles_txt_mv |
Gutshabash, E. Sh. @@aut@@ Lipovskii, V. D. @@aut@@ Nikulichev, S. S. @@aut@@ |
publishDateDaySort_date |
1998-06-01T00:00:00Z |
hierarchy_top_id |
130017507 |
dewey-sort |
3530 |
id |
OLC2054217654 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054217654</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055428.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02575486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054217654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02575486-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutshabash, E. Sh.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soliton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace Identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse Scatter Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell Stress Tensor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipovskii, V. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikulichev, S. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">115(1998), 3 vom: Juni, Seite 619-638</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:619-638</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02575486</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">1998</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">619-638</subfield></datafield></record></collection>
|
author |
Gutshabash, E. Sh. |
spellingShingle |
Gutshabash, E. Sh. ddc 530 misc Soliton misc Curve Space misc Trace Identity misc Inverse Scatter Problem misc Maxwell Stress Tensor Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
authorStr |
Gutshabash, E. Sh. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130017507 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5779 |
topic_title |
530 VZ Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations Soliton Curve Space Trace Identity Inverse Scatter Problem Maxwell Stress Tensor |
topic |
ddc 530 misc Soliton misc Curve Space misc Trace Identity misc Inverse Scatter Problem misc Maxwell Stress Tensor |
topic_unstemmed |
ddc 530 misc Soliton misc Curve Space misc Trace Identity misc Inverse Scatter Problem misc Maxwell Stress Tensor |
topic_browse |
ddc 530 misc Soliton misc Curve Space misc Trace Identity misc Inverse Scatter Problem misc Maxwell Stress Tensor |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and mathematical physics |
hierarchy_parent_id |
130017507 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Theoretical and mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X |
title |
Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
ctrlnum |
(DE-627)OLC2054217654 (DE-He213)BF02575486-p |
title_full |
Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
author_sort |
Gutshabash, E. Sh. |
journal |
Theoretical and mathematical physics |
journalStr |
Theoretical and mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
619 |
author_browse |
Gutshabash, E. Sh. Lipovskii, V. D. Nikulichev, S. S. |
container_volume |
115 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Gutshabash, E. Sh. |
doi_str_mv |
10.1007/BF02575486 |
dewey-full |
530 |
title_sort |
nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
title_auth |
Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
abstract |
Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. © Plenum Publishing Corporation 1998 |
abstractGer |
Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. © Plenum Publishing Corporation 1998 |
abstract_unstemmed |
Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions. © Plenum Publishing Corporation 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4310 GBV_ILN_4318 |
container_issue |
3 |
title_short |
Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations |
url |
https://doi.org/10.1007/BF02575486 |
remote_bool |
false |
author2 |
Lipovskii, V. D. Nikulichev, S. S. |
author2Str |
Lipovskii, V. D. Nikulichev, S. S. |
ppnlink |
130017507 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02575486 |
up_date |
2024-07-03T22:23:46.483Z |
_version_ |
1803598353120886784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054217654</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055428.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02575486</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054217654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02575486-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutshabash, E. Sh.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear σ-model in a curved space, gauge equivalence, and exact solutions of (2+0)-dimensional integrable equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We propose a nonlinear σ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the sinh-Gordon equation and evaluate its exact and asymptotic solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soliton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curve Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace Identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse Scatter Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell Stress Tensor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lipovskii, V. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikulichev, S. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">115(1998), 3 vom: Juni, Seite 619-638</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:619-638</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02575486</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">1998</subfield><subfield code="e">3</subfield><subfield code="c">06</subfield><subfield code="h">619-638</subfield></datafield></record></collection>
|
score |
7.401602 |