Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane
Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists und...
Ausführliche Beschreibung
Autor*in: |
Helminck, G. F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK/Nauka 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and mathematical physics - SP MAIK Nauka/Interperiodica, 1969, 165(2010), 3 vom: Dez., Seite 1637-1649 |
---|---|
Übergeordnetes Werk: |
volume:165 ; year:2010 ; number:3 ; month:12 ; pages:1637-1649 |
Links: |
---|
DOI / URN: |
10.1007/s11232-010-0134-z |
---|
Katalog-ID: |
OLC2054235369 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054235369 | ||
003 | DE-627 | ||
005 | 20230504055601.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11232-010-0134-z |2 doi | |
035 | |a (DE-627)OLC2054235369 | ||
035 | |a (DE-He213)s11232-010-0134-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Helminck, G. F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK/Nauka 2010 | ||
520 | |a Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. | ||
650 | 4 | |a integrable connection | |
650 | 4 | |a deformation space | |
650 | 4 | |a integrable deformation | |
650 | 4 | |a logarithmic pole | |
700 | 1 | |a Poberezhny, V. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and mathematical physics |d SP MAIK Nauka/Interperiodica, 1969 |g 165(2010), 3 vom: Dez., Seite 1637-1649 |w (DE-627)130017507 |w (DE-600)420246-6 |w (DE-576)01556018X |x 0040-5779 |7 nnns |
773 | 1 | 8 | |g volume:165 |g year:2010 |g number:3 |g month:12 |g pages:1637-1649 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11232-010-0134-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 165 |j 2010 |e 3 |c 12 |h 1637-1649 |
author_variant |
g f h gf gfh v a p va vap |
---|---|
matchkey_str |
article:00405779:2010----::oigoeomrmrhcierytmo1n |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s11232-010-0134-z doi (DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p DE-627 ger DE-627 rakwb eng 530 VZ Helminck, G. F. verfasserin aut Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK/Nauka 2010 Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. integrable connection deformation space integrable deformation logarithmic pole Poberezhny, V. A. aut Enthalten in Theoretical and mathematical physics SP MAIK Nauka/Interperiodica, 1969 165(2010), 3 vom: Dez., Seite 1637-1649 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:165 year:2010 number:3 month:12 pages:1637-1649 https://doi.org/10.1007/s11232-010-0134-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 AR 165 2010 3 12 1637-1649 |
spelling |
10.1007/s11232-010-0134-z doi (DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p DE-627 ger DE-627 rakwb eng 530 VZ Helminck, G. F. verfasserin aut Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK/Nauka 2010 Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. integrable connection deformation space integrable deformation logarithmic pole Poberezhny, V. A. aut Enthalten in Theoretical and mathematical physics SP MAIK Nauka/Interperiodica, 1969 165(2010), 3 vom: Dez., Seite 1637-1649 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:165 year:2010 number:3 month:12 pages:1637-1649 https://doi.org/10.1007/s11232-010-0134-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 AR 165 2010 3 12 1637-1649 |
allfields_unstemmed |
10.1007/s11232-010-0134-z doi (DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p DE-627 ger DE-627 rakwb eng 530 VZ Helminck, G. F. verfasserin aut Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK/Nauka 2010 Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. integrable connection deformation space integrable deformation logarithmic pole Poberezhny, V. A. aut Enthalten in Theoretical and mathematical physics SP MAIK Nauka/Interperiodica, 1969 165(2010), 3 vom: Dez., Seite 1637-1649 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:165 year:2010 number:3 month:12 pages:1637-1649 https://doi.org/10.1007/s11232-010-0134-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 AR 165 2010 3 12 1637-1649 |
allfieldsGer |
10.1007/s11232-010-0134-z doi (DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p DE-627 ger DE-627 rakwb eng 530 VZ Helminck, G. F. verfasserin aut Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK/Nauka 2010 Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. integrable connection deformation space integrable deformation logarithmic pole Poberezhny, V. A. aut Enthalten in Theoretical and mathematical physics SP MAIK Nauka/Interperiodica, 1969 165(2010), 3 vom: Dez., Seite 1637-1649 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:165 year:2010 number:3 month:12 pages:1637-1649 https://doi.org/10.1007/s11232-010-0134-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 AR 165 2010 3 12 1637-1649 |
allfieldsSound |
10.1007/s11232-010-0134-z doi (DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p DE-627 ger DE-627 rakwb eng 530 VZ Helminck, G. F. verfasserin aut Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK/Nauka 2010 Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. integrable connection deformation space integrable deformation logarithmic pole Poberezhny, V. A. aut Enthalten in Theoretical and mathematical physics SP MAIK Nauka/Interperiodica, 1969 165(2010), 3 vom: Dez., Seite 1637-1649 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:165 year:2010 number:3 month:12 pages:1637-1649 https://doi.org/10.1007/s11232-010-0134-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 AR 165 2010 3 12 1637-1649 |
language |
English |
source |
Enthalten in Theoretical and mathematical physics 165(2010), 3 vom: Dez., Seite 1637-1649 volume:165 year:2010 number:3 month:12 pages:1637-1649 |
sourceStr |
Enthalten in Theoretical and mathematical physics 165(2010), 3 vom: Dez., Seite 1637-1649 volume:165 year:2010 number:3 month:12 pages:1637-1649 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
integrable connection deformation space integrable deformation logarithmic pole |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and mathematical physics |
authorswithroles_txt_mv |
Helminck, G. F. @@aut@@ Poberezhny, V. A. @@aut@@ |
publishDateDaySort_date |
2010-12-01T00:00:00Z |
hierarchy_top_id |
130017507 |
dewey-sort |
3530 |
id |
OLC2054235369 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054235369</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11232-010-0134-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054235369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11232-010-0134-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helminck, G. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK/Nauka 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrable connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deformation space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrable deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logarithmic pole</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poberezhny, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1969</subfield><subfield code="g">165(2010), 3 vom: Dez., Seite 1637-1649</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1637-1649</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11232-010-0134-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">1637-1649</subfield></datafield></record></collection>
|
author |
Helminck, G. F. |
spellingShingle |
Helminck, G. F. ddc 530 misc integrable connection misc deformation space misc integrable deformation misc logarithmic pole Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
authorStr |
Helminck, G. F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130017507 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5779 |
topic_title |
530 VZ Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane integrable connection deformation space integrable deformation logarithmic pole |
topic |
ddc 530 misc integrable connection misc deformation space misc integrable deformation misc logarithmic pole |
topic_unstemmed |
ddc 530 misc integrable connection misc deformation space misc integrable deformation misc logarithmic pole |
topic_browse |
ddc 530 misc integrable connection misc deformation space misc integrable deformation misc logarithmic pole |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and mathematical physics |
hierarchy_parent_id |
130017507 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Theoretical and mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X |
title |
Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
ctrlnum |
(DE-627)OLC2054235369 (DE-He213)s11232-010-0134-z-p |
title_full |
Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
author_sort |
Helminck, G. F. |
journal |
Theoretical and mathematical physics |
journalStr |
Theoretical and mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
1637 |
author_browse |
Helminck, G. F. Poberezhny, V. A. |
container_volume |
165 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Helminck, G. F. |
doi_str_mv |
10.1007/s11232-010-0134-z |
dewey-full |
530 |
title_sort |
moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
title_auth |
Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
abstract |
Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. © MAIK/Nauka 2010 |
abstractGer |
Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. © MAIK/Nauka 2010 |
abstract_unstemmed |
Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space. © MAIK/Nauka 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2003 GBV_ILN_2088 |
container_issue |
3 |
title_short |
Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane |
url |
https://doi.org/10.1007/s11232-010-0134-z |
remote_bool |
false |
author2 |
Poberezhny, V. A. |
author2Str |
Poberezhny, V. A. |
ppnlink |
130017507 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11232-010-0134-z |
up_date |
2024-07-03T22:26:56.588Z |
_version_ |
1803598552468815872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054235369</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11232-010-0134-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054235369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11232-010-0134-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helminck, G. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moving poles of meromorphic linear systems on $ ℙ^{1} $(ℂ) in the complex plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK/Nauka 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let E0be a holomorphic vector bundle over $ P^{1} $(C) and †0be a meromorphic connection of E0. We introduce the notion of an integrable connection that describes the movement of the poles of †0in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrable connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deformation space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrable deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logarithmic pole</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poberezhny, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1969</subfield><subfield code="g">165(2010), 3 vom: Dez., Seite 1637-1649</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1637-1649</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11232-010-0134-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">1637-1649</subfield></datafield></record></collection>
|
score |
7.4021244 |