Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum...
Ausführliche Beschreibung
Autor*in: |
Nakanishi, T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and mathematical physics - Pleiades Publishing, 1969, 185(2015), 3 vom: Dez., Seite 1759-1768 |
---|---|
Übergeordnetes Werk: |
volume:185 ; year:2015 ; number:3 ; month:12 ; pages:1759-1768 |
Links: |
---|
DOI / URN: |
10.1007/s11232-015-0377-9 |
---|
Katalog-ID: |
OLC2054241717 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054241717 | ||
003 | DE-627 | ||
005 | 20230504055657.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11232-015-0377-9 |2 doi | |
035 | |a (DE-627)OLC2054241717 | ||
035 | |a (DE-He213)s11232-015-0377-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Nakanishi, T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2015 | ||
520 | |a Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. | ||
650 | 4 | |a cluster algebra | |
650 | 4 | |a quantum dilogarithm | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and mathematical physics |d Pleiades Publishing, 1969 |g 185(2015), 3 vom: Dez., Seite 1759-1768 |w (DE-627)130017507 |w (DE-600)420246-6 |w (DE-576)01556018X |x 0040-5779 |7 nnns |
773 | 1 | 8 | |g volume:185 |g year:2015 |g number:3 |g month:12 |g pages:1759-1768 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11232-015-0377-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 185 |j 2015 |e 3 |c 12 |h 1759-1768 |
author_variant |
t n tn |
---|---|
matchkey_str |
article:00405779:2015----::unugnrlzdlseagbaadunudlgr |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11232-015-0377-9 doi (DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p DE-627 ger DE-627 rakwb eng 530 VZ Nakanishi, T. verfasserin aut Quantum generalized cluster algebras and quantum dilogarithms of higher degrees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. cluster algebra quantum dilogarithm Enthalten in Theoretical and mathematical physics Pleiades Publishing, 1969 185(2015), 3 vom: Dez., Seite 1759-1768 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:185 year:2015 number:3 month:12 pages:1759-1768 https://doi.org/10.1007/s11232-015-0377-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 185 2015 3 12 1759-1768 |
spelling |
10.1007/s11232-015-0377-9 doi (DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p DE-627 ger DE-627 rakwb eng 530 VZ Nakanishi, T. verfasserin aut Quantum generalized cluster algebras and quantum dilogarithms of higher degrees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. cluster algebra quantum dilogarithm Enthalten in Theoretical and mathematical physics Pleiades Publishing, 1969 185(2015), 3 vom: Dez., Seite 1759-1768 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:185 year:2015 number:3 month:12 pages:1759-1768 https://doi.org/10.1007/s11232-015-0377-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 185 2015 3 12 1759-1768 |
allfields_unstemmed |
10.1007/s11232-015-0377-9 doi (DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p DE-627 ger DE-627 rakwb eng 530 VZ Nakanishi, T. verfasserin aut Quantum generalized cluster algebras and quantum dilogarithms of higher degrees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. cluster algebra quantum dilogarithm Enthalten in Theoretical and mathematical physics Pleiades Publishing, 1969 185(2015), 3 vom: Dez., Seite 1759-1768 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:185 year:2015 number:3 month:12 pages:1759-1768 https://doi.org/10.1007/s11232-015-0377-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 185 2015 3 12 1759-1768 |
allfieldsGer |
10.1007/s11232-015-0377-9 doi (DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p DE-627 ger DE-627 rakwb eng 530 VZ Nakanishi, T. verfasserin aut Quantum generalized cluster algebras and quantum dilogarithms of higher degrees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. cluster algebra quantum dilogarithm Enthalten in Theoretical and mathematical physics Pleiades Publishing, 1969 185(2015), 3 vom: Dez., Seite 1759-1768 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:185 year:2015 number:3 month:12 pages:1759-1768 https://doi.org/10.1007/s11232-015-0377-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 185 2015 3 12 1759-1768 |
allfieldsSound |
10.1007/s11232-015-0377-9 doi (DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p DE-627 ger DE-627 rakwb eng 530 VZ Nakanishi, T. verfasserin aut Quantum generalized cluster algebras and quantum dilogarithms of higher degrees 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. cluster algebra quantum dilogarithm Enthalten in Theoretical and mathematical physics Pleiades Publishing, 1969 185(2015), 3 vom: Dez., Seite 1759-1768 (DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X 0040-5779 nnns volume:185 year:2015 number:3 month:12 pages:1759-1768 https://doi.org/10.1007/s11232-015-0377-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 185 2015 3 12 1759-1768 |
language |
English |
source |
Enthalten in Theoretical and mathematical physics 185(2015), 3 vom: Dez., Seite 1759-1768 volume:185 year:2015 number:3 month:12 pages:1759-1768 |
sourceStr |
Enthalten in Theoretical and mathematical physics 185(2015), 3 vom: Dez., Seite 1759-1768 volume:185 year:2015 number:3 month:12 pages:1759-1768 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cluster algebra quantum dilogarithm |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Theoretical and mathematical physics |
authorswithroles_txt_mv |
Nakanishi, T. @@aut@@ |
publishDateDaySort_date |
2015-12-01T00:00:00Z |
hierarchy_top_id |
130017507 |
dewey-sort |
3530 |
id |
OLC2054241717 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054241717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11232-015-0377-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054241717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11232-015-0377-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakanishi, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum generalized cluster algebras and quantum dilogarithms of higher degrees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dilogarithm</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">Pleiades Publishing, 1969</subfield><subfield code="g">185(2015), 3 vom: Dez., Seite 1759-1768</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1759-1768</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11232-015-0377-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">1759-1768</subfield></datafield></record></collection>
|
author |
Nakanishi, T. |
spellingShingle |
Nakanishi, T. ddc 530 misc cluster algebra misc quantum dilogarithm Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
authorStr |
Nakanishi, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130017507 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5779 |
topic_title |
530 VZ Quantum generalized cluster algebras and quantum dilogarithms of higher degrees cluster algebra quantum dilogarithm |
topic |
ddc 530 misc cluster algebra misc quantum dilogarithm |
topic_unstemmed |
ddc 530 misc cluster algebra misc quantum dilogarithm |
topic_browse |
ddc 530 misc cluster algebra misc quantum dilogarithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and mathematical physics |
hierarchy_parent_id |
130017507 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Theoretical and mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130017507 (DE-600)420246-6 (DE-576)01556018X |
title |
Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
ctrlnum |
(DE-627)OLC2054241717 (DE-He213)s11232-015-0377-9-p |
title_full |
Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
author_sort |
Nakanishi, T. |
journal |
Theoretical and mathematical physics |
journalStr |
Theoretical and mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1759 |
author_browse |
Nakanishi, T. |
container_volume |
185 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Nakanishi, T. |
doi_str_mv |
10.1007/s11232-015-0377-9 |
dewey-full |
530 |
title_sort |
quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
title_auth |
Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
abstract |
Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. © Pleiades Publishing, Ltd. 2015 |
abstractGer |
Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. © Pleiades Publishing, Ltd. 2015 |
abstract_unstemmed |
Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds. © Pleiades Publishing, Ltd. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 |
container_issue |
3 |
title_short |
Quantum generalized cluster algebras and quantum dilogarithms of higher degrees |
url |
https://doi.org/10.1007/s11232-015-0377-9 |
remote_bool |
false |
ppnlink |
130017507 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11232-015-0377-9 |
up_date |
2024-07-03T22:28:06.351Z |
_version_ |
1803598625613283328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054241717</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504055657.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11232-015-0377-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054241717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11232-015-0377-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakanishi, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum generalized cluster algebras and quantum dilogarithms of higher degrees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum Y -seeds.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cluster algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dilogarithm</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and mathematical physics</subfield><subfield code="d">Pleiades Publishing, 1969</subfield><subfield code="g">185(2015), 3 vom: Dez., Seite 1759-1768</subfield><subfield code="w">(DE-627)130017507</subfield><subfield code="w">(DE-600)420246-6</subfield><subfield code="w">(DE-576)01556018X</subfield><subfield code="x">0040-5779</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1759-1768</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11232-015-0377-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">12</subfield><subfield code="h">1759-1768</subfield></datafield></record></collection>
|
score |
7.400923 |