Mathematical modeling of the dispersed phase dynamics
Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum e...
Ausführliche Beschreibung
Autor*in: |
Kholpanov, L. P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK “Nauka/Interperiodica” 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical foundations of chemical engineering - Nauka/Interperiodica, 1967, 39(2005), 2 vom: März, Seite 190-199 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2005 ; number:2 ; month:03 ; pages:190-199 |
Links: |
---|
DOI / URN: |
10.1007/s11236-005-0062-z |
---|
Katalog-ID: |
OLC2054255629 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054255629 | ||
003 | DE-627 | ||
005 | 20230509123646.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11236-005-0062-z |2 doi | |
035 | |a (DE-627)OLC2054255629 | ||
035 | |a (DE-He213)s11236-005-0062-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Kholpanov, L. P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mathematical modeling of the dispersed phase dynamics |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK “Nauka/Interperiodica” 2005 | ||
520 | |a Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. | ||
650 | 4 | |a Centrifuge | |
650 | 4 | |a Mathematical Modeling | |
650 | 4 | |a Sedimentation | |
650 | 4 | |a Disperse Phase | |
650 | 4 | |a Continuum Equation | |
700 | 1 | |a Ibyatov, R. I. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical foundations of chemical engineering |d Nauka/Interperiodica, 1967 |g 39(2005), 2 vom: März, Seite 190-199 |w (DE-627)129601438 |w (DE-600)241412-0 |w (DE-576)015095061 |x 0040-5795 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2005 |g number:2 |g month:03 |g pages:190-199 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11236-005-0062-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 39 |j 2005 |e 2 |c 03 |h 190-199 |
author_variant |
l p k lp lpk r i i ri rii |
---|---|
matchkey_str |
article:00405795:2005----::ahmtcloeigfhdses |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s11236-005-0062-z doi (DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p DE-627 ger DE-627 rakwb eng 660 VZ Kholpanov, L. P. verfasserin aut Mathematical modeling of the dispersed phase dynamics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation Ibyatov, R. I. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 2 vom: März, Seite 190-199 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:2 month:03 pages:190-199 https://doi.org/10.1007/s11236-005-0062-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 2 03 190-199 |
spelling |
10.1007/s11236-005-0062-z doi (DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p DE-627 ger DE-627 rakwb eng 660 VZ Kholpanov, L. P. verfasserin aut Mathematical modeling of the dispersed phase dynamics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation Ibyatov, R. I. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 2 vom: März, Seite 190-199 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:2 month:03 pages:190-199 https://doi.org/10.1007/s11236-005-0062-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 2 03 190-199 |
allfields_unstemmed |
10.1007/s11236-005-0062-z doi (DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p DE-627 ger DE-627 rakwb eng 660 VZ Kholpanov, L. P. verfasserin aut Mathematical modeling of the dispersed phase dynamics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation Ibyatov, R. I. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 2 vom: März, Seite 190-199 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:2 month:03 pages:190-199 https://doi.org/10.1007/s11236-005-0062-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 2 03 190-199 |
allfieldsGer |
10.1007/s11236-005-0062-z doi (DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p DE-627 ger DE-627 rakwb eng 660 VZ Kholpanov, L. P. verfasserin aut Mathematical modeling of the dispersed phase dynamics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation Ibyatov, R. I. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 2 vom: März, Seite 190-199 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:2 month:03 pages:190-199 https://doi.org/10.1007/s11236-005-0062-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 2 03 190-199 |
allfieldsSound |
10.1007/s11236-005-0062-z doi (DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p DE-627 ger DE-627 rakwb eng 660 VZ Kholpanov, L. P. verfasserin aut Mathematical modeling of the dispersed phase dynamics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation Ibyatov, R. I. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 2 vom: März, Seite 190-199 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:2 month:03 pages:190-199 https://doi.org/10.1007/s11236-005-0062-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 2 03 190-199 |
language |
English |
source |
Enthalten in Theoretical foundations of chemical engineering 39(2005), 2 vom: März, Seite 190-199 volume:39 year:2005 number:2 month:03 pages:190-199 |
sourceStr |
Enthalten in Theoretical foundations of chemical engineering 39(2005), 2 vom: März, Seite 190-199 volume:39 year:2005 number:2 month:03 pages:190-199 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Theoretical foundations of chemical engineering |
authorswithroles_txt_mv |
Kholpanov, L. P. @@aut@@ Ibyatov, R. I. @@aut@@ |
publishDateDaySort_date |
2005-03-01T00:00:00Z |
hierarchy_top_id |
129601438 |
dewey-sort |
3660 |
id |
OLC2054255629 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054255629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123646.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11236-005-0062-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054255629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11236-005-0062-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholpanov, L. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of the dispersed phase dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centrifuge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedimentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disperse Phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ibyatov, R. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">39(2005), 2 vom: März, Seite 190-199</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:190-199</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11236-005-0062-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2005</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">190-199</subfield></datafield></record></collection>
|
author |
Kholpanov, L. P. |
spellingShingle |
Kholpanov, L. P. ddc 660 misc Centrifuge misc Mathematical Modeling misc Sedimentation misc Disperse Phase misc Continuum Equation Mathematical modeling of the dispersed phase dynamics |
authorStr |
Kholpanov, L. P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601438 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5795 |
topic_title |
660 VZ Mathematical modeling of the dispersed phase dynamics Centrifuge Mathematical Modeling Sedimentation Disperse Phase Continuum Equation |
topic |
ddc 660 misc Centrifuge misc Mathematical Modeling misc Sedimentation misc Disperse Phase misc Continuum Equation |
topic_unstemmed |
ddc 660 misc Centrifuge misc Mathematical Modeling misc Sedimentation misc Disperse Phase misc Continuum Equation |
topic_browse |
ddc 660 misc Centrifuge misc Mathematical Modeling misc Sedimentation misc Disperse Phase misc Continuum Equation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical foundations of chemical engineering |
hierarchy_parent_id |
129601438 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Theoretical foundations of chemical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 |
title |
Mathematical modeling of the dispersed phase dynamics |
ctrlnum |
(DE-627)OLC2054255629 (DE-He213)s11236-005-0062-z-p |
title_full |
Mathematical modeling of the dispersed phase dynamics |
author_sort |
Kholpanov, L. P. |
journal |
Theoretical foundations of chemical engineering |
journalStr |
Theoretical foundations of chemical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
190 |
author_browse |
Kholpanov, L. P. Ibyatov, R. I. |
container_volume |
39 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Kholpanov, L. P. |
doi_str_mv |
10.1007/s11236-005-0062-z |
dewey-full |
660 |
title_sort |
mathematical modeling of the dispersed phase dynamics |
title_auth |
Mathematical modeling of the dispersed phase dynamics |
abstract |
Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. © MAIK “Nauka/Interperiodica” 2005 |
abstractGer |
Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. © MAIK “Nauka/Interperiodica” 2005 |
abstract_unstemmed |
Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor. © MAIK “Nauka/Interperiodica” 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
2 |
title_short |
Mathematical modeling of the dispersed phase dynamics |
url |
https://doi.org/10.1007/s11236-005-0062-z |
remote_bool |
false |
author2 |
Ibyatov, R. I. |
author2Str |
Ibyatov, R. I. |
ppnlink |
129601438 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11236-005-0062-z |
up_date |
2024-07-03T22:30:38.706Z |
_version_ |
1803598785368031232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054255629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123646.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11236-005-0062-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054255629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11236-005-0062-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kholpanov, L. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of the dispersed phase dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A vector equation of motion in the Lagrangian frame of reference is rearranged into a set of two scalar equations to determine the relative-velocity magnitude of a particle and its direction. The resulting system, written in terms of the Lamé coefficients, is solved jointly with continuum equations of motion in the Eulerian frame of reference. The method is exemplified by the flow of a heterogeneous mixture between permeable parallel walls and the flow of a heterogeneous non-Newtonian fluid over the surface of a sedimentation centrifuge rotor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Centrifuge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sedimentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disperse Phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ibyatov, R. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">39(2005), 2 vom: März, Seite 190-199</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:190-199</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11236-005-0062-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2005</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">190-199</subfield></datafield></record></collection>
|
score |
7.4009514 |