The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions
Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a...
Ausführliche Beschreibung
Autor*in: |
Smirnov, A. I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK “Nauka/Interperiodica” 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical foundations of chemical engineering - Nauka/Interperiodica, 1967, 39(2005), 3 vom: Mai, Seite 250-258 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2005 ; number:3 ; month:05 ; pages:250-258 |
Links: |
---|
DOI / URN: |
10.1007/s11236-005-0072-x |
---|
Katalog-ID: |
OLC2054255874 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054255874 | ||
003 | DE-627 | ||
005 | 20230509123646.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11236-005-0072-x |2 doi | |
035 | |a (DE-627)OLC2054255874 | ||
035 | |a (DE-He213)s11236-005-0072-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Smirnov, A. I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK “Nauka/Interperiodica” 2005 | ||
520 | |a Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. | ||
650 | 4 | |a Entropy | |
650 | 4 | |a Thermodynamic Parameter | |
650 | 4 | |a Closed System | |
650 | 4 | |a Entropy Generation | |
650 | 4 | |a Thermodynamic Analysis | |
773 | 0 | 8 | |i Enthalten in |t Theoretical foundations of chemical engineering |d Nauka/Interperiodica, 1967 |g 39(2005), 3 vom: Mai, Seite 250-258 |w (DE-627)129601438 |w (DE-600)241412-0 |w (DE-576)015095061 |x 0040-5795 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2005 |g number:3 |g month:05 |g pages:250-258 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11236-005-0072-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 39 |j 2005 |e 3 |c 05 |h 250-258 |
author_variant |
a i s ai ais |
---|---|
matchkey_str |
article:00405795:2005----::hmtoopsilsaeadtapiainohceiatemdnmcnlssfoeulbimrcseiautcmoetitror |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s11236-005-0072-x doi (DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p DE-627 ger DE-627 rakwb eng 660 VZ Smirnov, A. I. verfasserin aut The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 3 vom: Mai, Seite 250-258 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:3 month:05 pages:250-258 https://doi.org/10.1007/s11236-005-0072-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 3 05 250-258 |
spelling |
10.1007/s11236-005-0072-x doi (DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p DE-627 ger DE-627 rakwb eng 660 VZ Smirnov, A. I. verfasserin aut The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 3 vom: Mai, Seite 250-258 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:3 month:05 pages:250-258 https://doi.org/10.1007/s11236-005-0072-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 3 05 250-258 |
allfields_unstemmed |
10.1007/s11236-005-0072-x doi (DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p DE-627 ger DE-627 rakwb eng 660 VZ Smirnov, A. I. verfasserin aut The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 3 vom: Mai, Seite 250-258 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:3 month:05 pages:250-258 https://doi.org/10.1007/s11236-005-0072-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 3 05 250-258 |
allfieldsGer |
10.1007/s11236-005-0072-x doi (DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p DE-627 ger DE-627 rakwb eng 660 VZ Smirnov, A. I. verfasserin aut The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 3 vom: Mai, Seite 250-258 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:3 month:05 pages:250-258 https://doi.org/10.1007/s11236-005-0072-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 3 05 250-258 |
allfieldsSound |
10.1007/s11236-005-0072-x doi (DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p DE-627 ger DE-627 rakwb eng 660 VZ Smirnov, A. I. verfasserin aut The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2005 Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 39(2005), 3 vom: Mai, Seite 250-258 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:39 year:2005 number:3 month:05 pages:250-258 https://doi.org/10.1007/s11236-005-0072-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 39 2005 3 05 250-258 |
language |
English |
source |
Enthalten in Theoretical foundations of chemical engineering 39(2005), 3 vom: Mai, Seite 250-258 volume:39 year:2005 number:3 month:05 pages:250-258 |
sourceStr |
Enthalten in Theoretical foundations of chemical engineering 39(2005), 3 vom: Mai, Seite 250-258 volume:39 year:2005 number:3 month:05 pages:250-258 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Theoretical foundations of chemical engineering |
authorswithroles_txt_mv |
Smirnov, A. I. @@aut@@ |
publishDateDaySort_date |
2005-05-01T00:00:00Z |
hierarchy_top_id |
129601438 |
dewey-sort |
3660 |
id |
OLC2054255874 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054255874</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123646.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11236-005-0072-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054255874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11236-005-0072-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smirnov, A. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy Generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">39(2005), 3 vom: Mai, Seite 250-258</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:250-258</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11236-005-0072-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2005</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">250-258</subfield></datafield></record></collection>
|
author |
Smirnov, A. I. |
spellingShingle |
Smirnov, A. I. ddc 660 misc Entropy misc Thermodynamic Parameter misc Closed System misc Entropy Generation misc Thermodynamic Analysis The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
authorStr |
Smirnov, A. I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601438 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5795 |
topic_title |
660 VZ The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions Entropy Thermodynamic Parameter Closed System Entropy Generation Thermodynamic Analysis |
topic |
ddc 660 misc Entropy misc Thermodynamic Parameter misc Closed System misc Entropy Generation misc Thermodynamic Analysis |
topic_unstemmed |
ddc 660 misc Entropy misc Thermodynamic Parameter misc Closed System misc Entropy Generation misc Thermodynamic Analysis |
topic_browse |
ddc 660 misc Entropy misc Thermodynamic Parameter misc Closed System misc Entropy Generation misc Thermodynamic Analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical foundations of chemical engineering |
hierarchy_parent_id |
129601438 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Theoretical foundations of chemical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 |
title |
The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
ctrlnum |
(DE-627)OLC2054255874 (DE-He213)s11236-005-0072-x-p |
title_full |
The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
author_sort |
Smirnov, A. I. |
journal |
Theoretical foundations of chemical engineering |
journalStr |
Theoretical foundations of chemical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
250 |
author_browse |
Smirnov, A. I. |
container_volume |
39 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Smirnov, A. I. |
doi_str_mv |
10.1007/s11236-005-0072-x |
dewey-full |
660 |
title_sort |
the method of possible states and its application to the chemical thermodynamic analysis of nonequilibrium processes in a multicomponent mixture of reacting gases under isobaric adiabatic conditions |
title_auth |
The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
abstract |
Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. © MAIK “Nauka/Interperiodica” 2005 |
abstractGer |
Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. © MAIK “Nauka/Interperiodica” 2005 |
abstract_unstemmed |
Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented. © MAIK “Nauka/Interperiodica” 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
3 |
title_short |
The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions |
url |
https://doi.org/10.1007/s11236-005-0072-x |
remote_bool |
false |
ppnlink |
129601438 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11236-005-0072-x |
up_date |
2024-07-03T22:30:41.297Z |
_version_ |
1803598788084891648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054255874</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123646.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11236-005-0072-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054255874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11236-005-0072-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smirnov, A. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Method of Possible States and Its Application to the Chemical Thermodynamic Analysis of Nonequilibrium Processes in a Multicomponent Mixture of Reacting Gases under Isobaric Adiabatic Conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Subject to the laws of classical chemical thermodynamics on the basis of a method for representing a domain of possible states, a nonequilibrium process is considered in a closed system—a spatially homogeneous mixture of chemically reacting gases under isobaric adiabatic conditions. Using a vector representation of the rates of a set of basic reactions and analyzing entropy generation in the system, the path of the nonequilibrium process in the domain is determined without taking into account the factor of time, and relationships between the rates of the basic reactions as functions of the thermodynamic parameters of the system are established. The general form of an expression for the rates of the basic reactions is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy Generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic Analysis</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">39(2005), 3 vom: Mai, Seite 250-258</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:250-258</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11236-005-0072-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2005</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">250-258</subfield></datafield></record></collection>
|
score |
7.402316 |