Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component
Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indic...
Ausführliche Beschreibung
Autor*in: |
Dimov, S. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical foundations of chemical engineering - Nauka/Interperiodica, 1967, 41(2007), 2 vom: Apr., Seite 184-192 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2007 ; number:2 ; month:04 ; pages:184-192 |
Links: |
---|
DOI / URN: |
10.1134/S0040579507020121 |
---|
Katalog-ID: |
OLC2054257583 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054257583 | ||
003 | DE-627 | ||
005 | 20230509123649.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0040579507020121 |2 doi | |
035 | |a (DE-627)OLC2054257583 | ||
035 | |a (DE-He213)S0040579507020121-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Dimov, S. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2007 | ||
520 | |a Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. | ||
650 | 4 | |a Copper Content | |
650 | 4 | |a Effective Thermal Conductivity | |
650 | 4 | |a Copper Powder | |
650 | 4 | |a Metallic Copper | |
650 | 4 | |a Copper Particle | |
700 | 1 | |a Sipatrov, A. G. |4 aut | |
700 | 1 | |a Rudina, N. A. |4 aut | |
700 | 1 | |a Kuznetsov, V. V. |4 aut | |
700 | 1 | |a Khassin, A. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical foundations of chemical engineering |d Nauka/Interperiodica, 1967 |g 41(2007), 2 vom: Apr., Seite 184-192 |w (DE-627)129601438 |w (DE-600)241412-0 |w (DE-576)015095061 |x 0040-5795 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2007 |g number:2 |g month:04 |g pages:184-192 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0040579507020121 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 41 |j 2007 |e 2 |c 04 |h 184-192 |
author_variant |
s v d sv svd a g s ag ags n a r na nar v v k vv vvk a a k aa aak |
---|---|
matchkey_str |
article:00405795:2007----::hracnutvtocmoieaaytcnannmtlicpe |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1134/S0040579507020121 doi (DE-627)OLC2054257583 (DE-He213)S0040579507020121-p DE-627 ger DE-627 rakwb eng 660 VZ Dimov, S. V. verfasserin aut Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle Sipatrov, A. G. aut Rudina, N. A. aut Kuznetsov, V. V. aut Khassin, A. A. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 41(2007), 2 vom: Apr., Seite 184-192 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:41 year:2007 number:2 month:04 pages:184-192 https://doi.org/10.1134/S0040579507020121 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2007 2 04 184-192 |
spelling |
10.1134/S0040579507020121 doi (DE-627)OLC2054257583 (DE-He213)S0040579507020121-p DE-627 ger DE-627 rakwb eng 660 VZ Dimov, S. V. verfasserin aut Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle Sipatrov, A. G. aut Rudina, N. A. aut Kuznetsov, V. V. aut Khassin, A. A. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 41(2007), 2 vom: Apr., Seite 184-192 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:41 year:2007 number:2 month:04 pages:184-192 https://doi.org/10.1134/S0040579507020121 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2007 2 04 184-192 |
allfields_unstemmed |
10.1134/S0040579507020121 doi (DE-627)OLC2054257583 (DE-He213)S0040579507020121-p DE-627 ger DE-627 rakwb eng 660 VZ Dimov, S. V. verfasserin aut Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle Sipatrov, A. G. aut Rudina, N. A. aut Kuznetsov, V. V. aut Khassin, A. A. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 41(2007), 2 vom: Apr., Seite 184-192 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:41 year:2007 number:2 month:04 pages:184-192 https://doi.org/10.1134/S0040579507020121 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2007 2 04 184-192 |
allfieldsGer |
10.1134/S0040579507020121 doi (DE-627)OLC2054257583 (DE-He213)S0040579507020121-p DE-627 ger DE-627 rakwb eng 660 VZ Dimov, S. V. verfasserin aut Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle Sipatrov, A. G. aut Rudina, N. A. aut Kuznetsov, V. V. aut Khassin, A. A. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 41(2007), 2 vom: Apr., Seite 184-192 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:41 year:2007 number:2 month:04 pages:184-192 https://doi.org/10.1134/S0040579507020121 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2007 2 04 184-192 |
allfieldsSound |
10.1134/S0040579507020121 doi (DE-627)OLC2054257583 (DE-He213)S0040579507020121-p DE-627 ger DE-627 rakwb eng 660 VZ Dimov, S. V. verfasserin aut Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle Sipatrov, A. G. aut Rudina, N. A. aut Kuznetsov, V. V. aut Khassin, A. A. aut Enthalten in Theoretical foundations of chemical engineering Nauka/Interperiodica, 1967 41(2007), 2 vom: Apr., Seite 184-192 (DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 0040-5795 nnns volume:41 year:2007 number:2 month:04 pages:184-192 https://doi.org/10.1134/S0040579507020121 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 41 2007 2 04 184-192 |
language |
English |
source |
Enthalten in Theoretical foundations of chemical engineering 41(2007), 2 vom: Apr., Seite 184-192 volume:41 year:2007 number:2 month:04 pages:184-192 |
sourceStr |
Enthalten in Theoretical foundations of chemical engineering 41(2007), 2 vom: Apr., Seite 184-192 volume:41 year:2007 number:2 month:04 pages:184-192 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Theoretical foundations of chemical engineering |
authorswithroles_txt_mv |
Dimov, S. V. @@aut@@ Sipatrov, A. G. @@aut@@ Rudina, N. A. @@aut@@ Kuznetsov, V. V. @@aut@@ Khassin, A. A. @@aut@@ |
publishDateDaySort_date |
2007-04-01T00:00:00Z |
hierarchy_top_id |
129601438 |
dewey-sort |
3660 |
id |
OLC2054257583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054257583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0040579507020121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054257583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0040579507020121-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimov, S. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Thermal Conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Powder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallic Copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Particle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sipatrov, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rudina, N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuznetsov, V. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khassin, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">41(2007), 2 vom: Apr., Seite 184-192</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:184-192</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0040579507020121</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">184-192</subfield></datafield></record></collection>
|
author |
Dimov, S. V. |
spellingShingle |
Dimov, S. V. ddc 660 misc Copper Content misc Effective Thermal Conductivity misc Copper Powder misc Metallic Copper misc Copper Particle Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
authorStr |
Dimov, S. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601438 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0040-5795 |
topic_title |
660 VZ Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component Copper Content Effective Thermal Conductivity Copper Powder Metallic Copper Copper Particle |
topic |
ddc 660 misc Copper Content misc Effective Thermal Conductivity misc Copper Powder misc Metallic Copper misc Copper Particle |
topic_unstemmed |
ddc 660 misc Copper Content misc Effective Thermal Conductivity misc Copper Powder misc Metallic Copper misc Copper Particle |
topic_browse |
ddc 660 misc Copper Content misc Effective Thermal Conductivity misc Copper Powder misc Metallic Copper misc Copper Particle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical foundations of chemical engineering |
hierarchy_parent_id |
129601438 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Theoretical foundations of chemical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601438 (DE-600)241412-0 (DE-576)015095061 |
title |
Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
ctrlnum |
(DE-627)OLC2054257583 (DE-He213)S0040579507020121-p |
title_full |
Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
author_sort |
Dimov, S. V. |
journal |
Theoretical foundations of chemical engineering |
journalStr |
Theoretical foundations of chemical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
184 |
author_browse |
Dimov, S. V. Sipatrov, A. G. Rudina, N. A. Kuznetsov, V. V. Khassin, A. A. |
container_volume |
41 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Dimov, S. V. |
doi_str_mv |
10.1134/S0040579507020121 |
dewey-full |
660 |
title_sort |
thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
title_auth |
Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
abstract |
Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. © Pleiades Publishing, Ltd. 2007 |
abstractGer |
Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. © Pleiades Publishing, Ltd. 2007 |
abstract_unstemmed |
Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data. © Pleiades Publishing, Ltd. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
2 |
title_short |
Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component |
url |
https://doi.org/10.1134/S0040579507020121 |
remote_bool |
false |
author2 |
Sipatrov, A. G. Rudina, N. A. Kuznetsov, V. V. Khassin, A. A. |
author2Str |
Sipatrov, A. G. Rudina, N. A. Kuznetsov, V. V. Khassin, A. A. |
ppnlink |
129601438 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0040579507020121 |
up_date |
2024-07-03T22:31:00.779Z |
_version_ |
1803598808512200705 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054257583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0040579507020121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054257583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0040579507020121-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimov, S. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal conductivity of composite catalysts containing metallic copper as a reinforcing component</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dependences of the electrical and thermal conductivities of porous composite materials containing a metallic component (copper) on the volume copper content are investigated experimentally. The measured thermal conductivities of samples prepared according to the proposed technique indicate that the thermal conductivity of monolithic catalysts with a copper content of no less than 15 vol % exceeds 1 W $ m^{−1} $ $ K^{−1} $. This corresponds to the formation of a connected cluster consisting of conducting spheres in a random packing of conducting and insulating spheres. A comparative analysis of the thermal and electrical conductivities of the composites demonstrates that, at a copper content of higher than 20 vol %, the thermal conduction through a percolation cluster formed by copper particles makes the dominant contribution. In employing composite materials containing a catalytically active component in exothermic catalytic processes (Fischer-Tropsch synthesis, steam conversion of carbon monoxide CO, etc.), their high thermal conductivity is an important advantage that makes it possible to decrease the temperature gradient across the porous composite catalyst bed. A semiempirical method for calculating the thermal conductivity of composites is developed. The results of the calculations performed using the proposed method are in good agreement with experimental data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Content</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Thermal Conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Powder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallic Copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Particle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sipatrov, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rudina, N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuznetsov, V. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khassin, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical foundations of chemical engineering</subfield><subfield code="d">Nauka/Interperiodica, 1967</subfield><subfield code="g">41(2007), 2 vom: Apr., Seite 184-192</subfield><subfield code="w">(DE-627)129601438</subfield><subfield code="w">(DE-600)241412-0</subfield><subfield code="w">(DE-576)015095061</subfield><subfield code="x">0040-5795</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:184-192</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0040579507020121</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">184-192</subfield></datafield></record></collection>
|
score |
7.4008236 |