On a Separation Principle for Nonconvex Sets
Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is...
Ausführliche Beschreibung
Autor*in: |
Li, Guoyin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2008 |
---|
Übergeordnetes Werk: |
Enthalten in: Set-valued analysis - Springer Netherlands, 1993, 16(2008), 7-8 vom: 12. Juli, Seite 851-860 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2008 ; number:7-8 ; day:12 ; month:07 ; pages:851-860 |
Links: |
---|
DOI / URN: |
10.1007/s11228-008-0099-3 |
---|
Katalog-ID: |
OLC205433071X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC205433071X | ||
003 | DE-627 | ||
005 | 20230504054129.0 | ||
007 | tu | ||
008 | 200819s2008 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11228-008-0099-3 |2 doi | |
035 | |a (DE-627)OLC205433071X | ||
035 | |a (DE-He213)s11228-008-0099-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Li, Guoyin |e verfasserin |4 aut | |
245 | 1 | 0 | |a On a Separation Principle for Nonconvex Sets |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2008 | ||
520 | |a Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. | ||
650 | 4 | |a Separation principle | |
650 | 4 | |a Extremal principle | |
650 | 4 | |a Ekeland variational principle | |
650 | 4 | |a Completeness | |
650 | 4 | |a Strict separation theorem | |
700 | 1 | |a Tang, Chunming |4 aut | |
700 | 1 | |a Yu, Gaohang |4 aut | |
700 | 1 | |a Wei, Zengxin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Set-valued analysis |d Springer Netherlands, 1993 |g 16(2008), 7-8 vom: 12. Juli, Seite 851-860 |w (DE-627)17129047X |w (DE-600)1174189-2 |w (DE-576)051318350 |x 0927-6947 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2008 |g number:7-8 |g day:12 |g month:07 |g pages:851-860 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11228-008-0099-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 16 |j 2008 |e 7-8 |b 12 |c 07 |h 851-860 |
author_variant |
g l gl c t ct g y gy z w zw |
---|---|
matchkey_str |
article:09276947:2008----::nsprtopicpeon |
hierarchy_sort_str |
2008 |
publishDate |
2008 |
allfields |
10.1007/s11228-008-0099-3 doi (DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Li, Guoyin verfasserin aut On a Separation Principle for Nonconvex Sets 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2008 Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem Tang, Chunming aut Yu, Gaohang aut Wei, Zengxin aut Enthalten in Set-valued analysis Springer Netherlands, 1993 16(2008), 7-8 vom: 12. Juli, Seite 851-860 (DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 0927-6947 nnns volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 https://doi.org/10.1007/s11228-008-0099-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 AR 16 2008 7-8 12 07 851-860 |
spelling |
10.1007/s11228-008-0099-3 doi (DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Li, Guoyin verfasserin aut On a Separation Principle for Nonconvex Sets 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2008 Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem Tang, Chunming aut Yu, Gaohang aut Wei, Zengxin aut Enthalten in Set-valued analysis Springer Netherlands, 1993 16(2008), 7-8 vom: 12. Juli, Seite 851-860 (DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 0927-6947 nnns volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 https://doi.org/10.1007/s11228-008-0099-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 AR 16 2008 7-8 12 07 851-860 |
allfields_unstemmed |
10.1007/s11228-008-0099-3 doi (DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Li, Guoyin verfasserin aut On a Separation Principle for Nonconvex Sets 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2008 Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem Tang, Chunming aut Yu, Gaohang aut Wei, Zengxin aut Enthalten in Set-valued analysis Springer Netherlands, 1993 16(2008), 7-8 vom: 12. Juli, Seite 851-860 (DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 0927-6947 nnns volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 https://doi.org/10.1007/s11228-008-0099-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 AR 16 2008 7-8 12 07 851-860 |
allfieldsGer |
10.1007/s11228-008-0099-3 doi (DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Li, Guoyin verfasserin aut On a Separation Principle for Nonconvex Sets 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2008 Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem Tang, Chunming aut Yu, Gaohang aut Wei, Zengxin aut Enthalten in Set-valued analysis Springer Netherlands, 1993 16(2008), 7-8 vom: 12. Juli, Seite 851-860 (DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 0927-6947 nnns volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 https://doi.org/10.1007/s11228-008-0099-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 AR 16 2008 7-8 12 07 851-860 |
allfieldsSound |
10.1007/s11228-008-0099-3 doi (DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Li, Guoyin verfasserin aut On a Separation Principle for Nonconvex Sets 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2008 Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem Tang, Chunming aut Yu, Gaohang aut Wei, Zengxin aut Enthalten in Set-valued analysis Springer Netherlands, 1993 16(2008), 7-8 vom: 12. Juli, Seite 851-860 (DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 0927-6947 nnns volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 https://doi.org/10.1007/s11228-008-0099-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 AR 16 2008 7-8 12 07 851-860 |
language |
English |
source |
Enthalten in Set-valued analysis 16(2008), 7-8 vom: 12. Juli, Seite 851-860 volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 |
sourceStr |
Enthalten in Set-valued analysis 16(2008), 7-8 vom: 12. Juli, Seite 851-860 volume:16 year:2008 number:7-8 day:12 month:07 pages:851-860 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Set-valued analysis |
authorswithroles_txt_mv |
Li, Guoyin @@aut@@ Tang, Chunming @@aut@@ Yu, Gaohang @@aut@@ Wei, Zengxin @@aut@@ |
publishDateDaySort_date |
2008-07-12T00:00:00Z |
hierarchy_top_id |
17129047X |
dewey-sort |
3510 |
id |
OLC205433071X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205433071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504054129.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11228-008-0099-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205433071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11228-008-0099-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Guoyin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a Separation Principle for Nonconvex Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ekeland variational principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completeness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strict separation theorem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Gaohang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Zengxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Set-valued analysis</subfield><subfield code="d">Springer Netherlands, 1993</subfield><subfield code="g">16(2008), 7-8 vom: 12. Juli, Seite 851-860</subfield><subfield code="w">(DE-627)17129047X</subfield><subfield code="w">(DE-600)1174189-2</subfield><subfield code="w">(DE-576)051318350</subfield><subfield code="x">0927-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:851-860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11228-008-0099-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2008</subfield><subfield code="e">7-8</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">851-860</subfield></datafield></record></collection>
|
author |
Li, Guoyin |
spellingShingle |
Li, Guoyin ddc 510 ssgn 17,1 misc Separation principle misc Extremal principle misc Ekeland variational principle misc Completeness misc Strict separation theorem On a Separation Principle for Nonconvex Sets |
authorStr |
Li, Guoyin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)17129047X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0927-6947 |
topic_title |
510 VZ 17,1 ssgn On a Separation Principle for Nonconvex Sets Separation principle Extremal principle Ekeland variational principle Completeness Strict separation theorem |
topic |
ddc 510 ssgn 17,1 misc Separation principle misc Extremal principle misc Ekeland variational principle misc Completeness misc Strict separation theorem |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Separation principle misc Extremal principle misc Ekeland variational principle misc Completeness misc Strict separation theorem |
topic_browse |
ddc 510 ssgn 17,1 misc Separation principle misc Extremal principle misc Ekeland variational principle misc Completeness misc Strict separation theorem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Set-valued analysis |
hierarchy_parent_id |
17129047X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Set-valued analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)17129047X (DE-600)1174189-2 (DE-576)051318350 |
title |
On a Separation Principle for Nonconvex Sets |
ctrlnum |
(DE-627)OLC205433071X (DE-He213)s11228-008-0099-3-p |
title_full |
On a Separation Principle for Nonconvex Sets |
author_sort |
Li, Guoyin |
journal |
Set-valued analysis |
journalStr |
Set-valued analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
851 |
author_browse |
Li, Guoyin Tang, Chunming Yu, Gaohang Wei, Zengxin |
container_volume |
16 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Guoyin |
doi_str_mv |
10.1007/s11228-008-0099-3 |
dewey-full |
510 |
title_sort |
on a separation principle for nonconvex sets |
title_auth |
On a Separation Principle for Nonconvex Sets |
abstract |
Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. © Springer Science+Business Media B.V. 2008 |
abstractGer |
Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. © Springer Science+Business Media B.V. 2008 |
abstract_unstemmed |
Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space. © Springer Science+Business Media B.V. 2008 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4323 |
container_issue |
7-8 |
title_short |
On a Separation Principle for Nonconvex Sets |
url |
https://doi.org/10.1007/s11228-008-0099-3 |
remote_bool |
false |
author2 |
Tang, Chunming Yu, Gaohang Wei, Zengxin |
author2Str |
Tang, Chunming Yu, Gaohang Wei, Zengxin |
ppnlink |
17129047X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11228-008-0099-3 |
up_date |
2024-07-03T22:44:41.494Z |
_version_ |
1803599669095301120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC205433071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504054129.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11228-008-0099-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC205433071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11228-008-0099-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Guoyin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a Separation Principle for Nonconvex Sets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we relate the nonconvex separation principle (SP) established in Zheng and Ng (Math Program Series A, 104:69–90, 2005) with the known extremal principle (EP), Ekeland variational principle (EVP) and the completeness of the underlying space. In particular, we show that (SP) is equivalent to the completeness in a normed linear space setting. Moreover, as an application, an extension of the strict convex separation theorem is presented for Banach space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Separation principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ekeland variational principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Completeness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strict separation theorem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Gaohang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Zengxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Set-valued analysis</subfield><subfield code="d">Springer Netherlands, 1993</subfield><subfield code="g">16(2008), 7-8 vom: 12. Juli, Seite 851-860</subfield><subfield code="w">(DE-627)17129047X</subfield><subfield code="w">(DE-600)1174189-2</subfield><subfield code="w">(DE-576)051318350</subfield><subfield code="x">0927-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:12</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:851-860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11228-008-0099-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2008</subfield><subfield code="e">7-8</subfield><subfield code="b">12</subfield><subfield code="c">07</subfield><subfield code="h">851-860</subfield></datafield></record></collection>
|
score |
7.401534 |