Convective mass transfer across fluid interfaces in straight angular pores
Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. Th...
Ausführliche Beschreibung
Autor*in: |
Zhao, Weishu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Transport in porous media - Kluwer Academic Publishers, 1986, 66(2007), 3 vom: Feb., Seite 495-509 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2007 ; number:3 ; month:02 ; pages:495-509 |
Links: |
---|
DOI / URN: |
10.1007/s11242-006-0025-9 |
---|
Katalog-ID: |
OLC2054376116 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054376116 | ||
003 | DE-627 | ||
005 | 20230504062553.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11242-006-0025-9 |2 doi | |
035 | |a (DE-627)OLC2054376116 | ||
035 | |a (DE-He213)s11242-006-0025-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Zhao, Weishu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convective mass transfer across fluid interfaces in straight angular pores |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2007 | ||
520 | |a Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. | ||
650 | 4 | |a Mass transfer | |
650 | 4 | |a Meniscus | |
650 | 4 | |a Interface | |
650 | 4 | |a Convection | |
650 | 4 | |a Diffusion | |
650 | 4 | |a Pore network | |
700 | 1 | |a Ioannidis, Marios A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Transport in porous media |d Kluwer Academic Publishers, 1986 |g 66(2007), 3 vom: Feb., Seite 495-509 |w (DE-627)129206105 |w (DE-600)54858-3 |w (DE-576)014457431 |x 0169-3913 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2007 |g number:3 |g month:02 |g pages:495-509 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11242-006-0025-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 66 |j 2007 |e 3 |c 02 |h 495-509 |
author_variant |
w z wz m a i ma mai |
---|---|
matchkey_str |
article:01693913:2007----::ovcieasrnfrcosliitraeisr |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11242-006-0025-9 doi (DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p DE-627 ger DE-627 rakwb eng 530 VZ Zhao, Weishu verfasserin aut Convective mass transfer across fluid interfaces in straight angular pores 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2007 Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. Mass transfer Meniscus Interface Convection Diffusion Pore network Ioannidis, Marios A. aut Enthalten in Transport in porous media Kluwer Academic Publishers, 1986 66(2007), 3 vom: Feb., Seite 495-509 (DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 0169-3913 nnns volume:66 year:2007 number:3 month:02 pages:495-509 https://doi.org/10.1007/s11242-006-0025-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 AR 66 2007 3 02 495-509 |
spelling |
10.1007/s11242-006-0025-9 doi (DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p DE-627 ger DE-627 rakwb eng 530 VZ Zhao, Weishu verfasserin aut Convective mass transfer across fluid interfaces in straight angular pores 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2007 Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. Mass transfer Meniscus Interface Convection Diffusion Pore network Ioannidis, Marios A. aut Enthalten in Transport in porous media Kluwer Academic Publishers, 1986 66(2007), 3 vom: Feb., Seite 495-509 (DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 0169-3913 nnns volume:66 year:2007 number:3 month:02 pages:495-509 https://doi.org/10.1007/s11242-006-0025-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 AR 66 2007 3 02 495-509 |
allfields_unstemmed |
10.1007/s11242-006-0025-9 doi (DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p DE-627 ger DE-627 rakwb eng 530 VZ Zhao, Weishu verfasserin aut Convective mass transfer across fluid interfaces in straight angular pores 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2007 Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. Mass transfer Meniscus Interface Convection Diffusion Pore network Ioannidis, Marios A. aut Enthalten in Transport in porous media Kluwer Academic Publishers, 1986 66(2007), 3 vom: Feb., Seite 495-509 (DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 0169-3913 nnns volume:66 year:2007 number:3 month:02 pages:495-509 https://doi.org/10.1007/s11242-006-0025-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 AR 66 2007 3 02 495-509 |
allfieldsGer |
10.1007/s11242-006-0025-9 doi (DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p DE-627 ger DE-627 rakwb eng 530 VZ Zhao, Weishu verfasserin aut Convective mass transfer across fluid interfaces in straight angular pores 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2007 Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. Mass transfer Meniscus Interface Convection Diffusion Pore network Ioannidis, Marios A. aut Enthalten in Transport in porous media Kluwer Academic Publishers, 1986 66(2007), 3 vom: Feb., Seite 495-509 (DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 0169-3913 nnns volume:66 year:2007 number:3 month:02 pages:495-509 https://doi.org/10.1007/s11242-006-0025-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 AR 66 2007 3 02 495-509 |
allfieldsSound |
10.1007/s11242-006-0025-9 doi (DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p DE-627 ger DE-627 rakwb eng 530 VZ Zhao, Weishu verfasserin aut Convective mass transfer across fluid interfaces in straight angular pores 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2007 Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. Mass transfer Meniscus Interface Convection Diffusion Pore network Ioannidis, Marios A. aut Enthalten in Transport in porous media Kluwer Academic Publishers, 1986 66(2007), 3 vom: Feb., Seite 495-509 (DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 0169-3913 nnns volume:66 year:2007 number:3 month:02 pages:495-509 https://doi.org/10.1007/s11242-006-0025-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 AR 66 2007 3 02 495-509 |
language |
English |
source |
Enthalten in Transport in porous media 66(2007), 3 vom: Feb., Seite 495-509 volume:66 year:2007 number:3 month:02 pages:495-509 |
sourceStr |
Enthalten in Transport in porous media 66(2007), 3 vom: Feb., Seite 495-509 volume:66 year:2007 number:3 month:02 pages:495-509 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mass transfer Meniscus Interface Convection Diffusion Pore network |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Transport in porous media |
authorswithroles_txt_mv |
Zhao, Weishu @@aut@@ Ioannidis, Marios A. @@aut@@ |
publishDateDaySort_date |
2007-02-01T00:00:00Z |
hierarchy_top_id |
129206105 |
dewey-sort |
3530 |
id |
OLC2054376116 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054376116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504062553.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11242-006-0025-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054376116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11242-006-0025-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Weishu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convective mass transfer across fluid interfaces in straight angular pores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meniscus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ioannidis, Marios A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transport in porous media</subfield><subfield code="d">Kluwer Academic Publishers, 1986</subfield><subfield code="g">66(2007), 3 vom: Feb., Seite 495-509</subfield><subfield code="w">(DE-627)129206105</subfield><subfield code="w">(DE-600)54858-3</subfield><subfield code="w">(DE-576)014457431</subfield><subfield code="x">0169-3913</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:495-509</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11242-006-0025-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">495-509</subfield></datafield></record></collection>
|
author |
Zhao, Weishu |
spellingShingle |
Zhao, Weishu ddc 530 misc Mass transfer misc Meniscus misc Interface misc Convection misc Diffusion misc Pore network Convective mass transfer across fluid interfaces in straight angular pores |
authorStr |
Zhao, Weishu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206105 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0169-3913 |
topic_title |
530 VZ Convective mass transfer across fluid interfaces in straight angular pores Mass transfer Meniscus Interface Convection Diffusion Pore network |
topic |
ddc 530 misc Mass transfer misc Meniscus misc Interface misc Convection misc Diffusion misc Pore network |
topic_unstemmed |
ddc 530 misc Mass transfer misc Meniscus misc Interface misc Convection misc Diffusion misc Pore network |
topic_browse |
ddc 530 misc Mass transfer misc Meniscus misc Interface misc Convection misc Diffusion misc Pore network |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Transport in porous media |
hierarchy_parent_id |
129206105 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Transport in porous media |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206105 (DE-600)54858-3 (DE-576)014457431 |
title |
Convective mass transfer across fluid interfaces in straight angular pores |
ctrlnum |
(DE-627)OLC2054376116 (DE-He213)s11242-006-0025-9-p |
title_full |
Convective mass transfer across fluid interfaces in straight angular pores |
author_sort |
Zhao, Weishu |
journal |
Transport in porous media |
journalStr |
Transport in porous media |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
495 |
author_browse |
Zhao, Weishu Ioannidis, Marios A. |
container_volume |
66 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Zhao, Weishu |
doi_str_mv |
10.1007/s11242-006-0025-9 |
dewey-full |
530 |
title_sort |
convective mass transfer across fluid interfaces in straight angular pores |
title_auth |
Convective mass transfer across fluid interfaces in straight angular pores |
abstract |
Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. © Springer Science+Business Media B.V. 2007 |
abstractGer |
Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. © Springer Science+Business Media B.V. 2007 |
abstract_unstemmed |
Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error. © Springer Science+Business Media B.V. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 |
container_issue |
3 |
title_short |
Convective mass transfer across fluid interfaces in straight angular pores |
url |
https://doi.org/10.1007/s11242-006-0025-9 |
remote_bool |
false |
author2 |
Ioannidis, Marios A. |
author2Str |
Ioannidis, Marios A. |
ppnlink |
129206105 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11242-006-0025-9 |
up_date |
2024-07-03T22:54:04.673Z |
_version_ |
1803600259631284224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054376116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504062553.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11242-006-0025-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054376116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11242-006-0025-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Weishu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convective mass transfer across fluid interfaces in straight angular pores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Steady convective mass transfer to or from fluid interfaces in pores of angular cross-section is theoretically investigated. This situation is relevant to a variety of mass transport process in porous media, including the fate of residual non-aqueous phase liquid ganglia and gas bubbles. The model incorporates the essential physics of capillarity and solute mass transfer by convection and diffusion in corner fluid filaments. The geometry of the corner filaments, characterized by the fluid–fluid contact angle, the corner half-angle and the interface meniscus curvature, is accounted for. Boundary conditions of zero surface shear (‘perfect-slip’) and infinite surface shear (‘no-slip’) at the fluid–fluid interface are considered. The governing equations for laminar flow within the corner filament and convective diffusion to or from the fluid–fluid interface are solved using finite-element methods. Flow computations are verified by comparing the dimensionless resistance factor and hydraulic conductance of corner filaments against recent numerical solutions by Patzek and Kristensen (J. Colloid Interface Sci 236, 305–317 2001). Novel results are obtained for the average effluent concentration as a function of flow geometry and pore-scale Peclet number. These results are correlated to a characteristic corner length and local pore-scale Peclet number using empirical equations appropriate for implementation in pore network models. Finally, a previously published “2D-slit” approximation to the problem at hand is checked and found to be in considerable error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meniscus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ioannidis, Marios A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transport in porous media</subfield><subfield code="d">Kluwer Academic Publishers, 1986</subfield><subfield code="g">66(2007), 3 vom: Feb., Seite 495-509</subfield><subfield code="w">(DE-627)129206105</subfield><subfield code="w">(DE-600)54858-3</subfield><subfield code="w">(DE-576)014457431</subfield><subfield code="x">0169-3913</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:495-509</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11242-006-0025-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="c">02</subfield><subfield code="h">495-509</subfield></datafield></record></collection>
|
score |
7.4008236 |