Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain
Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem c...
Ausführliche Beschreibung
Autor*in: |
Mitropol’skii, Yu. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Springer Netherlands, 1967, 49(1997), 2 vom: Feb., Seite 269-280 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:1997 ; number:2 ; month:02 ; pages:269-280 |
Links: |
---|
DOI / URN: |
10.1007/BF02486441 |
---|
Katalog-ID: |
OLC2054543306 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054543306 | ||
003 | DE-627 | ||
005 | 20230504065419.0 | ||
007 | tu | ||
008 | 200819s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02486441 |2 doi | |
035 | |a (DE-627)OLC2054543306 | ||
035 | |a (DE-He213)BF02486441-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Mitropol’skii, Yu. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1998 | ||
520 | |a Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. | ||
650 | 4 | |a Parabolic Equation | |
650 | 4 | |a Integral Identity | |
650 | 4 | |a Ukrainian Academy | |
650 | 4 | |a Nonlocal Condition | |
650 | 4 | |a Nonlocal Boundary Condition | |
700 | 1 | |a Berezovskii, A. A. |4 aut | |
700 | 1 | |a Shkhanukov-Lafishev, M. Kh. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Springer Netherlands, 1967 |g 49(1997), 2 vom: Feb., Seite 269-280 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:1997 |g number:2 |g month:02 |g pages:269-280 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02486441 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 49 |j 1997 |e 2 |c 02 |h 269-280 |
author_variant |
y a m ya yam a a b aa aab m k s l mks mksl |
---|---|
matchkey_str |
article:00415995:1997----::olnannoapolmfrprblcqainnt |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1007/BF02486441 doi (DE-627)OLC2054543306 (DE-He213)BF02486441-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mitropol’skii, Yu. A. verfasserin aut Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition Berezovskii, A. A. aut Shkhanukov-Lafishev, M. Kh. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 49(1997), 2 vom: Feb., Seite 269-280 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:49 year:1997 number:2 month:02 pages:269-280 https://doi.org/10.1007/BF02486441 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 AR 49 1997 2 02 269-280 |
spelling |
10.1007/BF02486441 doi (DE-627)OLC2054543306 (DE-He213)BF02486441-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mitropol’skii, Yu. A. verfasserin aut Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition Berezovskii, A. A. aut Shkhanukov-Lafishev, M. Kh. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 49(1997), 2 vom: Feb., Seite 269-280 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:49 year:1997 number:2 month:02 pages:269-280 https://doi.org/10.1007/BF02486441 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 AR 49 1997 2 02 269-280 |
allfields_unstemmed |
10.1007/BF02486441 doi (DE-627)OLC2054543306 (DE-He213)BF02486441-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mitropol’skii, Yu. A. verfasserin aut Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition Berezovskii, A. A. aut Shkhanukov-Lafishev, M. Kh. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 49(1997), 2 vom: Feb., Seite 269-280 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:49 year:1997 number:2 month:02 pages:269-280 https://doi.org/10.1007/BF02486441 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 AR 49 1997 2 02 269-280 |
allfieldsGer |
10.1007/BF02486441 doi (DE-627)OLC2054543306 (DE-He213)BF02486441-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mitropol’skii, Yu. A. verfasserin aut Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition Berezovskii, A. A. aut Shkhanukov-Lafishev, M. Kh. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 49(1997), 2 vom: Feb., Seite 269-280 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:49 year:1997 number:2 month:02 pages:269-280 https://doi.org/10.1007/BF02486441 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 AR 49 1997 2 02 269-280 |
allfieldsSound |
10.1007/BF02486441 doi (DE-627)OLC2054543306 (DE-He213)BF02486441-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mitropol’skii, Yu. A. verfasserin aut Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1998 Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition Berezovskii, A. A. aut Shkhanukov-Lafishev, M. Kh. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 49(1997), 2 vom: Feb., Seite 269-280 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:49 year:1997 number:2 month:02 pages:269-280 https://doi.org/10.1007/BF02486441 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 AR 49 1997 2 02 269-280 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 49(1997), 2 vom: Feb., Seite 269-280 volume:49 year:1997 number:2 month:02 pages:269-280 |
sourceStr |
Enthalten in Ukrainian mathematical journal 49(1997), 2 vom: Feb., Seite 269-280 volume:49 year:1997 number:2 month:02 pages:269-280 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
Mitropol’skii, Yu. A. @@aut@@ Berezovskii, A. A. @@aut@@ Shkhanukov-Lafishev, M. Kh. @@aut@@ |
publishDateDaySort_date |
1997-02-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC2054543306 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054543306</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065419.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02486441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054543306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02486441-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitropol’skii, Yu. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ukrainian Academy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Boundary Condition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berezovskii, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shkhanukov-Lafishev, M. Kh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">49(1997), 2 vom: Feb., Seite 269-280</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:269-280</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02486441</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">1997</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">269-280</subfield></datafield></record></collection>
|
author |
Mitropol’skii, Yu. A. |
spellingShingle |
Mitropol’skii, Yu. A. ddc 510 ssgn 17,1 misc Parabolic Equation misc Integral Identity misc Ukrainian Academy misc Nonlocal Condition misc Nonlocal Boundary Condition Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
authorStr |
Mitropol’skii, Yu. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain Parabolic Equation Integral Identity Ukrainian Academy Nonlocal Condition Nonlocal Boundary Condition |
topic |
ddc 510 ssgn 17,1 misc Parabolic Equation misc Integral Identity misc Ukrainian Academy misc Nonlocal Condition misc Nonlocal Boundary Condition |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Parabolic Equation misc Integral Identity misc Ukrainian Academy misc Nonlocal Condition misc Nonlocal Boundary Condition |
topic_browse |
ddc 510 ssgn 17,1 misc Parabolic Equation misc Integral Identity misc Ukrainian Academy misc Nonlocal Condition misc Nonlocal Boundary Condition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
ctrlnum |
(DE-627)OLC2054543306 (DE-He213)BF02486441-p |
title_full |
Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
author_sort |
Mitropol’skii, Yu. A. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
269 |
author_browse |
Mitropol’skii, Yu. A. Berezovskii, A. A. Shkhanukov-Lafishev, M. Kh. |
container_volume |
49 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Mitropol’skii, Yu. A. |
doi_str_mv |
10.1007/BF02486441 |
dewey-full |
510 |
title_sort |
nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
title_auth |
Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
abstract |
Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. © Plenum Publishing Corporation 1998 |
abstractGer |
Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. © Plenum Publishing Corporation 1998 |
abstract_unstemmed |
Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small. © Plenum Publishing Corporation 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4103 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 |
container_issue |
2 |
title_short |
Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain |
url |
https://doi.org/10.1007/BF02486441 |
remote_bool |
false |
author2 |
Berezovskii, A. A. Shkhanukov-Lafishev, M. Kh |
author2Str |
Berezovskii, A. A. Shkhanukov-Lafishev, M. Kh |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02486441 |
up_date |
2024-07-03T23:30:11.739Z |
_version_ |
1803602531966779392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054543306</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065419.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02486441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054543306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02486441-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitropol’skii, Yu. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear nonlocal problems for a parabolic equation in a two-dimensional domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We establish the convergence of the Rothe method for a parabolic equation with nonlocal boundary conditions and obtain an a priori estimate for the constructed difference scheme in the grid norm on a ball. We prove that the suggested iterative process for the solution of the posed problem converges in the small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ukrainian Academy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Boundary Condition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berezovskii, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shkhanukov-Lafishev, M. Kh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">49(1997), 2 vom: Feb., Seite 269-280</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:269-280</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02486441</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">1997</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">269-280</subfield></datafield></record></collection>
|
score |
7.402501 |