Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II
Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding...
Ausführliche Beschreibung
Autor*in: |
Samoilenko, A. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic/Plenum Publishers 2000 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Springer Netherlands, 1967, 51(1999), 11 vom: Nov., Seite 1713-1728 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:1999 ; number:11 ; month:11 ; pages:1713-1728 |
Links: |
---|
DOI / URN: |
10.1007/BF02525274 |
---|
Katalog-ID: |
OLC2054548758 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054548758 | ||
003 | DE-627 | ||
005 | 20230504065430.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02525274 |2 doi | |
035 | |a (DE-627)OLC2054548758 | ||
035 | |a (DE-He213)BF02525274-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Samoilenko, A. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic/Plenum Publishers 2000 | ||
520 | |a Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. | ||
650 | 4 | |a Riemannian Surface | |
650 | 4 | |a Hamiltonian System | |
650 | 4 | |a Symplectic Structure | |
650 | 4 | |a Hamiltonian Function | |
650 | 4 | |a Canonical Transformation | |
700 | 1 | |a Prikarpatskii, Ya A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Springer Netherlands, 1967 |g 51(1999), 11 vom: Nov., Seite 1713-1728 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:1999 |g number:11 |g month:11 |g pages:1713-1728 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02525274 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 51 |j 1999 |e 11 |c 11 |h 1713-1728 |
author_variant |
a m s am ams y a p ya yap |
---|---|
matchkey_str |
article:00415995:1999----::netgtooivrateomtosfnerlaiodoaibtclyetrecmlt |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/BF02525274 doi (DE-627)OLC2054548758 (DE-He213)BF02525274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Samoilenko, A. M. verfasserin aut Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 2000 Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation Prikarpatskii, Ya A. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 51(1999), 11 vom: Nov., Seite 1713-1728 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:51 year:1999 number:11 month:11 pages:1713-1728 https://doi.org/10.1007/BF02525274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 AR 51 1999 11 11 1713-1728 |
spelling |
10.1007/BF02525274 doi (DE-627)OLC2054548758 (DE-He213)BF02525274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Samoilenko, A. M. verfasserin aut Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 2000 Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation Prikarpatskii, Ya A. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 51(1999), 11 vom: Nov., Seite 1713-1728 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:51 year:1999 number:11 month:11 pages:1713-1728 https://doi.org/10.1007/BF02525274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 AR 51 1999 11 11 1713-1728 |
allfields_unstemmed |
10.1007/BF02525274 doi (DE-627)OLC2054548758 (DE-He213)BF02525274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Samoilenko, A. M. verfasserin aut Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 2000 Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation Prikarpatskii, Ya A. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 51(1999), 11 vom: Nov., Seite 1713-1728 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:51 year:1999 number:11 month:11 pages:1713-1728 https://doi.org/10.1007/BF02525274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 AR 51 1999 11 11 1713-1728 |
allfieldsGer |
10.1007/BF02525274 doi (DE-627)OLC2054548758 (DE-He213)BF02525274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Samoilenko, A. M. verfasserin aut Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 2000 Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation Prikarpatskii, Ya A. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 51(1999), 11 vom: Nov., Seite 1713-1728 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:51 year:1999 number:11 month:11 pages:1713-1728 https://doi.org/10.1007/BF02525274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 AR 51 1999 11 11 1713-1728 |
allfieldsSound |
10.1007/BF02525274 doi (DE-627)OLC2054548758 (DE-He213)BF02525274-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Samoilenko, A. M. verfasserin aut Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 2000 Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation Prikarpatskii, Ya A. aut Enthalten in Ukrainian mathematical journal Springer Netherlands, 1967 51(1999), 11 vom: Nov., Seite 1713-1728 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:51 year:1999 number:11 month:11 pages:1713-1728 https://doi.org/10.1007/BF02525274 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 AR 51 1999 11 11 1713-1728 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 51(1999), 11 vom: Nov., Seite 1713-1728 volume:51 year:1999 number:11 month:11 pages:1713-1728 |
sourceStr |
Enthalten in Ukrainian mathematical journal 51(1999), 11 vom: Nov., Seite 1713-1728 volume:51 year:1999 number:11 month:11 pages:1713-1728 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
Samoilenko, A. M. @@aut@@ Prikarpatskii, Ya A. @@aut@@ |
publishDateDaySort_date |
1999-11-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC2054548758 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054548758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065430.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02525274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054548758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02525274-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samoilenko, A. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic/Plenum Publishers 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical Transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prikarpatskii, Ya A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">51(1999), 11 vom: Nov., Seite 1713-1728</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1713-1728</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02525274</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">1999</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">1713-1728</subfield></datafield></record></collection>
|
author |
Samoilenko, A. M. |
spellingShingle |
Samoilenko, A. M. ddc 510 ssgn 17,1 misc Riemannian Surface misc Hamiltonian System misc Symplectic Structure misc Hamiltonian Function misc Canonical Transformation Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
authorStr |
Samoilenko, A. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation |
topic |
ddc 510 ssgn 17,1 misc Riemannian Surface misc Hamiltonian System misc Symplectic Structure misc Hamiltonian Function misc Canonical Transformation |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Riemannian Surface misc Hamiltonian System misc Symplectic Structure misc Hamiltonian Function misc Canonical Transformation |
topic_browse |
ddc 510 ssgn 17,1 misc Riemannian Surface misc Hamiltonian System misc Symplectic Structure misc Hamiltonian Function misc Canonical Transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
ctrlnum |
(DE-627)OLC2054548758 (DE-He213)BF02525274-p |
title_full |
Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
author_sort |
Samoilenko, A. M. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
1713 |
author_browse |
Samoilenko, A. M. Prikarpatskii, Ya A. |
container_volume |
51 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Samoilenko, A. M. |
doi_str_mv |
10.1007/BF02525274 |
dewey-full |
510 |
title_sort |
investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable hamiltonian systems. ii |
title_auth |
Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
abstract |
Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. © Kluwer Academic/Plenum Publishers 2000 |
abstractGer |
Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. © Kluwer Academic/Plenum Publishers 2000 |
abstract_unstemmed |
Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system. © Kluwer Academic/Plenum Publishers 2000 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4314 GBV_ILN_4318 |
container_issue |
11 |
title_short |
Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II |
url |
https://doi.org/10.1007/BF02525274 |
remote_bool |
false |
author2 |
Prikarpatskii, Ya A. |
author2Str |
Prikarpatskii, Ya A. |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02525274 |
up_date |
2024-07-03T23:31:04.169Z |
_version_ |
1803602586941521921 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054548758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065430.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02525274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054548758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02525274-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samoilenko, A. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic/Plenum Publishers 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamiltonian Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical Transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prikarpatskii, Ya A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">51(1999), 11 vom: Nov., Seite 1713-1728</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1713-1728</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02525274</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">1999</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">1713-1728</subfield></datafield></record></collection>
|
score |
7.401515 |