Groups with Few Nonmodular Subgroups
Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice.
Autor*in: |
de Mari, F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Kluwer Academic Publishers-Consultants Bureau, 1967, 56(2004), 10 vom: Okt., Seite 1693-1698 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2004 ; number:10 ; month:10 ; pages:1693-1698 |
Links: |
---|
DOI / URN: |
10.1007/s11253-005-0144-4 |
---|
Katalog-ID: |
OLC2054557579 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054557579 | ||
003 | DE-627 | ||
005 | 20230504065458.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11253-005-0144-4 |2 doi | |
035 | |a (DE-627)OLC2054557579 | ||
035 | |a (DE-He213)s11253-005-0144-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a de Mari, F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Groups with Few Nonmodular Subgroups |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2005 | ||
520 | |a Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. | ||
650 | 4 | |a Normal Subgroup | |
650 | 4 | |a Quotient Group | |
650 | 4 | |a Proper Subgroup | |
650 | 4 | |a Subgroup Lattice | |
650 | 4 | |a Modular Subgroup | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Kluwer Academic Publishers-Consultants Bureau, 1967 |g 56(2004), 10 vom: Okt., Seite 1693-1698 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2004 |g number:10 |g month:10 |g pages:1693-1698 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11253-005-0144-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 56 |j 2004 |e 10 |c 10 |h 1693-1698 |
author_variant |
m f d mf mfd |
---|---|
matchkey_str |
article:00415995:2004----::rusihennouas |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s11253-005-0144-4 doi (DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn de Mari, F. verfasserin aut Groups with Few Nonmodular Subgroups 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup Enthalten in Ukrainian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1967 56(2004), 10 vom: Okt., Seite 1693-1698 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:56 year:2004 number:10 month:10 pages:1693-1698 https://doi.org/10.1007/s11253-005-0144-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2004 10 10 1693-1698 |
spelling |
10.1007/s11253-005-0144-4 doi (DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn de Mari, F. verfasserin aut Groups with Few Nonmodular Subgroups 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup Enthalten in Ukrainian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1967 56(2004), 10 vom: Okt., Seite 1693-1698 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:56 year:2004 number:10 month:10 pages:1693-1698 https://doi.org/10.1007/s11253-005-0144-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2004 10 10 1693-1698 |
allfields_unstemmed |
10.1007/s11253-005-0144-4 doi (DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn de Mari, F. verfasserin aut Groups with Few Nonmodular Subgroups 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup Enthalten in Ukrainian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1967 56(2004), 10 vom: Okt., Seite 1693-1698 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:56 year:2004 number:10 month:10 pages:1693-1698 https://doi.org/10.1007/s11253-005-0144-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2004 10 10 1693-1698 |
allfieldsGer |
10.1007/s11253-005-0144-4 doi (DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn de Mari, F. verfasserin aut Groups with Few Nonmodular Subgroups 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup Enthalten in Ukrainian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1967 56(2004), 10 vom: Okt., Seite 1693-1698 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:56 year:2004 number:10 month:10 pages:1693-1698 https://doi.org/10.1007/s11253-005-0144-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2004 10 10 1693-1698 |
allfieldsSound |
10.1007/s11253-005-0144-4 doi (DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn de Mari, F. verfasserin aut Groups with Few Nonmodular Subgroups 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup Enthalten in Ukrainian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1967 56(2004), 10 vom: Okt., Seite 1693-1698 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:56 year:2004 number:10 month:10 pages:1693-1698 https://doi.org/10.1007/s11253-005-0144-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2004 10 10 1693-1698 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 56(2004), 10 vom: Okt., Seite 1693-1698 volume:56 year:2004 number:10 month:10 pages:1693-1698 |
sourceStr |
Enthalten in Ukrainian mathematical journal 56(2004), 10 vom: Okt., Seite 1693-1698 volume:56 year:2004 number:10 month:10 pages:1693-1698 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
de Mari, F. @@aut@@ |
publishDateDaySort_date |
2004-10-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC2054557579 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054557579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065458.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-005-0144-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054557579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-005-0144-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Mari, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups with Few Nonmodular Subgroups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1967</subfield><subfield code="g">56(2004), 10 vom: Okt., Seite 1693-1698</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1693-1698</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-005-0144-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2004</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">1693-1698</subfield></datafield></record></collection>
|
author |
de Mari, F. |
spellingShingle |
de Mari, F. ddc 510 ssgn 17,1 misc Normal Subgroup misc Quotient Group misc Proper Subgroup misc Subgroup Lattice misc Modular Subgroup Groups with Few Nonmodular Subgroups |
authorStr |
de Mari, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn Groups with Few Nonmodular Subgroups Normal Subgroup Quotient Group Proper Subgroup Subgroup Lattice Modular Subgroup |
topic |
ddc 510 ssgn 17,1 misc Normal Subgroup misc Quotient Group misc Proper Subgroup misc Subgroup Lattice misc Modular Subgroup |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Normal Subgroup misc Quotient Group misc Proper Subgroup misc Subgroup Lattice misc Modular Subgroup |
topic_browse |
ddc 510 ssgn 17,1 misc Normal Subgroup misc Quotient Group misc Proper Subgroup misc Subgroup Lattice misc Modular Subgroup |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
Groups with Few Nonmodular Subgroups |
ctrlnum |
(DE-627)OLC2054557579 (DE-He213)s11253-005-0144-4-p |
title_full |
Groups with Few Nonmodular Subgroups |
author_sort |
de Mari, F. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
1693 |
author_browse |
de Mari, F. |
container_volume |
56 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
de Mari, F. |
doi_str_mv |
10.1007/s11253-005-0144-4 |
dewey-full |
510 |
title_sort |
groups with few nonmodular subgroups |
title_auth |
Groups with Few Nonmodular Subgroups |
abstract |
Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. © Springer Science+Business Media, Inc. 2005 |
abstractGer |
Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. © Springer Science+Business Media, Inc. 2005 |
abstract_unstemmed |
Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice. © Springer Science+Business Media, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 |
container_issue |
10 |
title_short |
Groups with Few Nonmodular Subgroups |
url |
https://doi.org/10.1007/s11253-005-0144-4 |
remote_bool |
false |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11253-005-0144-4 |
up_date |
2024-07-03T23:32:26.188Z |
_version_ |
1803602672944676864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054557579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065458.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-005-0144-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054557579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-005-0144-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Mari, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups with Few Nonmodular Subgroups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let G be a Tarski-free group such that the join of all nonmodular subgroups of G is a proper subgroup in G. It is proved that G contains a finite normal subgroup N such that the quotient group G/N has a modular subgroup lattice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup Lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1967</subfield><subfield code="g">56(2004), 10 vom: Okt., Seite 1693-1698</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1693-1698</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-005-0144-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2004</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">1693-1698</subfield></datafield></record></collection>
|
score |
7.4009676 |