Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type
We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation...
Ausführliche Beschreibung
Autor*in: |
Tunc, T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Springer US, 1967, 66(2014), 6 vom: Nov., Seite 928-936 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2014 ; number:6 ; month:11 ; pages:928-936 |
Links: |
---|
DOI / URN: |
10.1007/s11253-014-0982-z |
---|
Katalog-ID: |
OLC2054569941 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054569941 | ||
003 | DE-627 | ||
005 | 20230504065648.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11253-014-0982-z |2 doi | |
035 | |a (DE-627)OLC2054569941 | ||
035 | |a (DE-He213)s11253-014-0982-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Tunc, T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. | ||
650 | 4 | |a Approximation Property | |
650 | 4 | |a Bernstein Polynomial | |
650 | 4 | |a Positive Linear Operator | |
650 | 4 | |a Continuity Point | |
650 | 4 | |a Total Positivity | |
700 | 1 | |a Simsek, E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Springer US, 1967 |g 66(2014), 6 vom: Nov., Seite 928-936 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2014 |g number:6 |g month:11 |g pages:928-936 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11253-014-0982-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 66 |j 2014 |e 6 |c 11 |h 928-936 |
author_variant |
t t tt e s es |
---|---|
matchkey_str |
article:00415995:2014----::oeprxmtopoeteosaziaynentioea |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11253-014-0982-z doi (DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Tunc, T. verfasserin aut Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity Simsek, E. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 66(2014), 6 vom: Nov., Seite 928-936 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:66 year:2014 number:6 month:11 pages:928-936 https://doi.org/10.1007/s11253-014-0982-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 66 2014 6 11 928-936 |
spelling |
10.1007/s11253-014-0982-z doi (DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Tunc, T. verfasserin aut Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity Simsek, E. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 66(2014), 6 vom: Nov., Seite 928-936 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:66 year:2014 number:6 month:11 pages:928-936 https://doi.org/10.1007/s11253-014-0982-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 66 2014 6 11 928-936 |
allfields_unstemmed |
10.1007/s11253-014-0982-z doi (DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Tunc, T. verfasserin aut Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity Simsek, E. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 66(2014), 6 vom: Nov., Seite 928-936 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:66 year:2014 number:6 month:11 pages:928-936 https://doi.org/10.1007/s11253-014-0982-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 66 2014 6 11 928-936 |
allfieldsGer |
10.1007/s11253-014-0982-z doi (DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Tunc, T. verfasserin aut Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity Simsek, E. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 66(2014), 6 vom: Nov., Seite 928-936 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:66 year:2014 number:6 month:11 pages:928-936 https://doi.org/10.1007/s11253-014-0982-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 66 2014 6 11 928-936 |
allfieldsSound |
10.1007/s11253-014-0982-z doi (DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Tunc, T. verfasserin aut Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity Simsek, E. aut Enthalten in Ukrainian mathematical journal Springer US, 1967 66(2014), 6 vom: Nov., Seite 928-936 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:66 year:2014 number:6 month:11 pages:928-936 https://doi.org/10.1007/s11253-014-0982-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 66 2014 6 11 928-936 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 66(2014), 6 vom: Nov., Seite 928-936 volume:66 year:2014 number:6 month:11 pages:928-936 |
sourceStr |
Enthalten in Ukrainian mathematical journal 66(2014), 6 vom: Nov., Seite 928-936 volume:66 year:2014 number:6 month:11 pages:928-936 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
Tunc, T. @@aut@@ Simsek, E. @@aut@@ |
publishDateDaySort_date |
2014-11-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC2054569941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054569941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-014-0982-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054569941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-014-0982-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tunc, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernstein Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Linear Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Positivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simsek, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">66(2014), 6 vom: Nov., Seite 928-936</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:928-936</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-014-0982-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">928-936</subfield></datafield></record></collection>
|
author |
Tunc, T. |
spellingShingle |
Tunc, T. ddc 510 ssgn 17,1 misc Approximation Property misc Bernstein Polynomial misc Positive Linear Operator misc Continuity Point misc Total Positivity Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
authorStr |
Tunc, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type Approximation Property Bernstein Polynomial Positive Linear Operator Continuity Point Total Positivity |
topic |
ddc 510 ssgn 17,1 misc Approximation Property misc Bernstein Polynomial misc Positive Linear Operator misc Continuity Point misc Total Positivity |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Approximation Property misc Bernstein Polynomial misc Positive Linear Operator misc Continuity Point misc Total Positivity |
topic_browse |
ddc 510 ssgn 17,1 misc Approximation Property misc Bernstein Polynomial misc Positive Linear Operator misc Continuity Point misc Total Positivity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
ctrlnum |
(DE-627)OLC2054569941 (DE-He213)s11253-014-0982-z-p |
title_full |
Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
author_sort |
Tunc, T. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
928 |
author_browse |
Tunc, T. Simsek, E. |
container_volume |
66 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Tunc, T. |
doi_str_mv |
10.1007/s11253-014-0982-z |
dewey-full |
510 |
title_sort |
some approximation properties of szasz–mirakyan–bernstein operators of the chlodovsky type |
title_auth |
Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
abstract |
We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. © Springer Science+Business Media New York 2014 |
abstractGer |
We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 |
container_issue |
6 |
title_short |
Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type |
url |
https://doi.org/10.1007/s11253-014-0982-z |
remote_bool |
false |
author2 |
Simsek, E. |
author2Str |
Simsek, E. |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11253-014-0982-z |
up_date |
2024-07-03T23:34:20.213Z |
_version_ |
1803602792530575360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054569941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-014-0982-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054569941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-014-0982-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tunc, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Approximation Properties of Szasz–Mirakyan–Bernstein Operators of the Chlodovsky Type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation Property</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernstein Polynomial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Linear Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuity Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Positivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simsek, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">66(2014), 6 vom: Nov., Seite 928-936</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:928-936</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-014-0982-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">928-936</subfield></datafield></record></collection>
|
score |
7.402074 |