On Sylow Subgroups of Some Shunkov Groups
We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group.
Autor*in: |
Senashov, V. I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Ukrainian mathematical journal - Springer US, 1967, 67(2015), 3 vom: Aug., Seite 455-463 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2015 ; number:3 ; month:08 ; pages:455-463 |
Links: |
---|
DOI / URN: |
10.1007/s11253-015-1092-2 |
---|
Katalog-ID: |
OLC2054571008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2054571008 | ||
003 | DE-627 | ||
005 | 20230504065659.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11253-015-1092-2 |2 doi | |
035 | |a (DE-627)OLC2054571008 | ||
035 | |a (DE-He213)s11253-015-1092-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Senashov, V. I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On Sylow Subgroups of Some Shunkov Groups |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. | ||
650 | 4 | |a Cyclic Group | |
650 | 4 | |a Dihedral Group | |
650 | 4 | |a Periodic Group | |
650 | 4 | |a Periodic Part | |
650 | 4 | |a Abelian Normal Subgroup | |
773 | 0 | 8 | |i Enthalten in |t Ukrainian mathematical journal |d Springer US, 1967 |g 67(2015), 3 vom: Aug., Seite 455-463 |w (DE-627)12993318X |w (DE-600)390019-8 |w (DE-576)015490556 |x 0041-5995 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2015 |g number:3 |g month:08 |g pages:455-463 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11253-015-1092-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 67 |j 2015 |e 3 |c 08 |h 455-463 |
author_variant |
v i s vi vis |
---|---|
matchkey_str |
article:00415995:2015----::nyosbrusfoeh |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11253-015-1092-2 doi (DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Senashov, V. I. verfasserin aut On Sylow Subgroups of Some Shunkov Groups 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup Enthalten in Ukrainian mathematical journal Springer US, 1967 67(2015), 3 vom: Aug., Seite 455-463 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:67 year:2015 number:3 month:08 pages:455-463 https://doi.org/10.1007/s11253-015-1092-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 67 2015 3 08 455-463 |
spelling |
10.1007/s11253-015-1092-2 doi (DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Senashov, V. I. verfasserin aut On Sylow Subgroups of Some Shunkov Groups 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup Enthalten in Ukrainian mathematical journal Springer US, 1967 67(2015), 3 vom: Aug., Seite 455-463 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:67 year:2015 number:3 month:08 pages:455-463 https://doi.org/10.1007/s11253-015-1092-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 67 2015 3 08 455-463 |
allfields_unstemmed |
10.1007/s11253-015-1092-2 doi (DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Senashov, V. I. verfasserin aut On Sylow Subgroups of Some Shunkov Groups 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup Enthalten in Ukrainian mathematical journal Springer US, 1967 67(2015), 3 vom: Aug., Seite 455-463 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:67 year:2015 number:3 month:08 pages:455-463 https://doi.org/10.1007/s11253-015-1092-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 67 2015 3 08 455-463 |
allfieldsGer |
10.1007/s11253-015-1092-2 doi (DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Senashov, V. I. verfasserin aut On Sylow Subgroups of Some Shunkov Groups 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup Enthalten in Ukrainian mathematical journal Springer US, 1967 67(2015), 3 vom: Aug., Seite 455-463 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:67 year:2015 number:3 month:08 pages:455-463 https://doi.org/10.1007/s11253-015-1092-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 67 2015 3 08 455-463 |
allfieldsSound |
10.1007/s11253-015-1092-2 doi (DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Senashov, V. I. verfasserin aut On Sylow Subgroups of Some Shunkov Groups 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup Enthalten in Ukrainian mathematical journal Springer US, 1967 67(2015), 3 vom: Aug., Seite 455-463 (DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 0041-5995 nnns volume:67 year:2015 number:3 month:08 pages:455-463 https://doi.org/10.1007/s11253-015-1092-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 67 2015 3 08 455-463 |
language |
English |
source |
Enthalten in Ukrainian mathematical journal 67(2015), 3 vom: Aug., Seite 455-463 volume:67 year:2015 number:3 month:08 pages:455-463 |
sourceStr |
Enthalten in Ukrainian mathematical journal 67(2015), 3 vom: Aug., Seite 455-463 volume:67 year:2015 number:3 month:08 pages:455-463 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ukrainian mathematical journal |
authorswithroles_txt_mv |
Senashov, V. I. @@aut@@ |
publishDateDaySort_date |
2015-08-01T00:00:00Z |
hierarchy_top_id |
12993318X |
dewey-sort |
3510 |
id |
OLC2054571008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054571008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-015-1092-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054571008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-015-1092-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Senashov, V. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Sylow Subgroups of Some Shunkov Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dihedral Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Part</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian Normal Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">67(2015), 3 vom: Aug., Seite 455-463</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:455-463</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-015-1092-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">08</subfield><subfield code="h">455-463</subfield></datafield></record></collection>
|
author |
Senashov, V. I. |
spellingShingle |
Senashov, V. I. ddc 510 ssgn 17,1 misc Cyclic Group misc Dihedral Group misc Periodic Group misc Periodic Part misc Abelian Normal Subgroup On Sylow Subgroups of Some Shunkov Groups |
authorStr |
Senashov, V. I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12993318X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0041-5995 |
topic_title |
510 VZ 17,1 ssgn On Sylow Subgroups of Some Shunkov Groups Cyclic Group Dihedral Group Periodic Group Periodic Part Abelian Normal Subgroup |
topic |
ddc 510 ssgn 17,1 misc Cyclic Group misc Dihedral Group misc Periodic Group misc Periodic Part misc Abelian Normal Subgroup |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Cyclic Group misc Dihedral Group misc Periodic Group misc Periodic Part misc Abelian Normal Subgroup |
topic_browse |
ddc 510 ssgn 17,1 misc Cyclic Group misc Dihedral Group misc Periodic Group misc Periodic Part misc Abelian Normal Subgroup |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ukrainian mathematical journal |
hierarchy_parent_id |
12993318X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ukrainian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12993318X (DE-600)390019-8 (DE-576)015490556 |
title |
On Sylow Subgroups of Some Shunkov Groups |
ctrlnum |
(DE-627)OLC2054571008 (DE-He213)s11253-015-1092-2-p |
title_full |
On Sylow Subgroups of Some Shunkov Groups |
author_sort |
Senashov, V. I. |
journal |
Ukrainian mathematical journal |
journalStr |
Ukrainian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
455 |
author_browse |
Senashov, V. I. |
container_volume |
67 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Senashov, V. I. |
doi_str_mv |
10.1007/s11253-015-1092-2 |
dewey-full |
510 |
title_sort |
on sylow subgroups of some shunkov groups |
title_auth |
On Sylow Subgroups of Some Shunkov Groups |
abstract |
We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. © Springer Science+Business Media New York 2015 |
abstractGer |
We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
3 |
title_short |
On Sylow Subgroups of Some Shunkov Groups |
url |
https://doi.org/10.1007/s11253-015-1092-2 |
remote_bool |
false |
ppnlink |
12993318X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11253-015-1092-2 |
up_date |
2024-07-03T23:34:30.092Z |
_version_ |
1803602802867437569 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2054571008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504065659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11253-015-1092-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2054571008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11253-015-1092-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Senashov, V. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On Sylow Subgroups of Some Shunkov Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study Shunkov groups with the following condition: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, we establish the structure of Sylow 2-subgroups in this group.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dihedral Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic Part</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian Normal Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ukrainian mathematical journal</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">67(2015), 3 vom: Aug., Seite 455-463</subfield><subfield code="w">(DE-627)12993318X</subfield><subfield code="w">(DE-600)390019-8</subfield><subfield code="w">(DE-576)015490556</subfield><subfield code="x">0041-5995</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:455-463</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11253-015-1092-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">08</subfield><subfield code="h">455-463</subfield></datafield></record></collection>
|
score |
7.4002924 |